作为教师的你,一定也想过到底什么样的教案才是有意义的吧,制定教案的主要目的就是为了提高我们的教学质量,下面是范文社小编为您分享的数学五年级教案5篇,感谢您的参阅。
数学五年级教案篇1
教学目标:
(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。
(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。
(三)培养学生养成良好的学习习惯,提高学生的计算能力。
教学重点:
掌握整数、小数四则混合运算的运算顺序。
教学难点:
提高学生计算正确率以及约等号的正确使用。
教学过程:
一、复习准备
1.口算
12+0.12=7.2-0.2=3.5÷0.35=
2.95+0.05=5-0.6=2.8÷0.14=
8÷12.5=1.2+2.8-3.99=4×1.72=
3.74+6.26=4.5×6=0.25×4÷0.2=
2÷4=20×0.2=20.75-9.5=
3.5×8×0.125=
2.提问
(1)我们学过哪几种运算?
(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)
(3)整数四则混合运算的顺序是什么?
二、学习新课
1.学习例1:3.7-2.5+4.6=3.6×6÷0.9=
(1)思考:以上两题中分别含有什么运算?运算顺序怎样?
(2)学生试算后订正。
3.7-2.5+4.6
=1.2+4.6
=5.8
3.6×6+0.9
=21.6÷0.9
=24
(3)小结运算顺序
①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。
②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)
③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)
2.学习例2:35.6-5×1.73=6.75+2.52÷1.2=
(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?
(2)学生计算后订正。
(3)小结。
以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?
讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
(4)练习:先说出运算顺序,再算出得数。
①p37“做一做”;②3.6÷1.2+0.5×5。
思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)
②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)
教师介绍:小括号“()”是公元17世纪由荷兰人吉拉特首先使用。中括号“[]”是公元17世纪首次出现在英国的互里士的著作中。
小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)
3.试做例3:3.6÷(1.2+0.5)×5=3.69÷[(1.2+0.5)×5]=
(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
(2)学生试做
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解
在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。
要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)
学生继续计算后,订正
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
≈2.12×5
=10.6
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
≈0.42
提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)
4.小结
(1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)
(2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)
(3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
三、巩固反馈
1.p38:做一做。
2.p40:1①②,2①②。
(1)说出运算顺序;
(2)计算并且验算;
(3)订正并小结验算方法。
验算方法:①原式验算;②互逆验算;③交换验算。
3.判断下面各题,哪些是对的,哪些是错的,并说明原因。
(1)0.8-0.8×0.7=0();
(2)1.6+1.4×2=6();
(3)50-3.9+6.1=40();
(4)20÷2.5×4=32();
(5)9.6+0.4-9.6+0.4=0();
(6)4.8×2÷4.8×2=1()。
4.p40:4。先计算填空,再列出综合算式。
5.课后作业:p40:1③④,2③④,3。
数学五年级教案篇2
教学内容:
人教版小学数学教材五年级上册第44页主题图、例1、第45页“做一做”及相关练习,第49页“生活中的数学”。
教学目标:
1、初步体验事件发生的确定性和不确定性,能列出简单的随机现象中所有可能发生的结果。能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
2、借助猜测、实验、交流等活动,培养学生的逻辑思维能力和口头表达能力。
3、通过学生对确定现象和不确定现象的体验,体会数学和日常生活的密切联系。
教学重点:
通过活动,使学生体验事件发生的确定性与不确定性。
教学难点:
使学生能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
教学准备:
课件、节目卡片、抽奖盒。
教学过程:
一、游戏导入,激活经验
(一)游戏1:猜猜硬币在哪只手里。
1、教师将枚硬币握在手中,并在背后交换位置,让学生猜一猜硬币在哪只手里。说一说你能确定吗?
2、教师打开没有硬币的手,再让学生猜一猜硬币在哪只手里。说一说你能确定吗?为什么?
(二)游戏2:猜猜抛出的硬币是正面朝上还是反面朝上。
1、教师将这枚硬币抛出,让学生说出可能是哪个面朝上,要求说出所有可能。
2、让学生猜一猜是哪个面朝上。
3、教师揭示结果。
(三)揭示课题。在生活中有些事件的发生是确定的,有些是不确定的。今天我们一起来探究事件发生的可能性。
?设计意图】通过游戏激活学生的生活经验,初步感知事件发生的确定性和不确定性,为学生进一步探究奠定坚实的基础。
数学五年级教案篇3
教学理念:
让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。
教学过程:
一、课前探疑
学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。
二、课始集疑
1、揭题
2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。
过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。
三、课中释疑
认识天平:课件出示天平,同学们说天平的作用、用法。
认识等式
1、演示课件 写出式子
在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?
你能用一个数学式子来表示这时候的现象吗? 40+50<100
再在左边放一个30克的物体,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+50+30>100
把左边的一个30克的物体换成10克的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+50+10=100
再把左边的10克与50克的物体换成未知的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+x
再把左边的未知的物体换成另一个未知的,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? 40+x=100
再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?
你能也用一个式子来表示这时候的现象吗? x + x=150
2、分类
刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。
展示同学们不同的分类,并说说你们是按照什么标准分的?
师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)
3、理解概念
师:为什么这么分?你们发现了这一类式子有什么特点? 左右两边相等
揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)
谁来举一些例子说说什么是等式?
数学五年级教案篇4
设计说明
教材的意图不仅仅是要求学生掌握本节课的基本知识和基本技能,更重要的是要教给学生探索知识的方法和策略,鼓励学生在教师的引导下自主探索和研究数学知识,这样做的意义就在于将学生的独立思考、展开想象、自主探索、交流讨论、分析判断等探索活动贯穿于课堂教学的全过程,使学生不断获得和积累数学活动经验,培养学生的学习兴趣和学习能力。
1、突出动手操作的学习方式。
通过把正方体盒子剪开得到展开图的活动,引导学生直观认识正方体的展开图。通过学生沿着不同的棱来剪,得到不同的展开图,让学生充分感知正方体不同的展开图,体会到从不同的角度去思考和探究问题,会有不同的结果。
2、渗透转化思想,发展空间观念。
引导学生先通过想象折叠的过程和折叠后的图形来帮助学生建立表象,再通过动手“折一折”的活动来验证猜想。让学生在反复展开和折叠的过程中体验立体图形与平面图形相互转化的过程,建立展开图中的面与长方体和正方体中的面的对应关系,渗透转化和对应的数学思想,发展空间观念,培养学生多角度探究问题的能力和空间思维能力。
课前准备
教师准备ppt课件,长方体和正方体模型
学生准备长方体和正方体盒子
教学过程
激趣引入,明确目标
师交待学习目标:
1、通过动手剪一剪、折一折,体验正方体展开与折叠之间的对应关系,加深对长方体、正方体的认识。
2、会根据长方体、正方体的特点或动手操作等方法判断某一图形折叠后能否围成长方体或正方体。
设计意图:师交代学习目标的作用,让学生明确这节课要做什么,学会什么。
合作交流,探究新知
活动一展??
提出活动要求:把一个正方体盒子沿着棱剪开,得到一个展开图。
1、教师做示范并指导学生操作。
第一:必须沿着棱剪;第二:正方体的每个面至少有一条棱与其他面相连。
2、学生动手剪,教师指导有困难的学生,并把剪得好的正方体展开图展示在黑板上。
3、小组交流剪出的不同形状的展开图。
4、全班交流:观察黑板上的这些不同形状的展开图,你发现了什么?
5、教师小结:同一个正方体,剪法不同得到的展开图也不同,共有11种不同的展开图。(课件出示正方体的11种展开图)
设计意图:让学生经历展开的过程,有利于培养学生的空间观念,同时也让学生感悟到同一个正方体展开的结果是多样的。
活动二折叠
提出活动要求:同桌合作,把同桌的展开图重新折叠成正方体。
1、同桌各自交换展开图,动手折一折。
2、找规律。(课件出示正方体的11种展开图)
师:观察这11种展开图,找一找有什么规律。
预设
生1:有6种中间是4个正方形的,两侧分别有1个正方形,形状不同。
生2:有3种中间是3个正方形的,两侧分别有2个和1个正方形。
生3:有1种中间是2个正方形的,两侧分别有2个正方形。
生4:有1种两行各有3个正方形的。
数学五年级教案篇5
设计说明
自主探究、合作交流是学生学习的重要方式,也是《数学课程标准》所提倡的。本节课所学习的“用坐标图确定物体的位置”是对学生已有经验的提升,是将用生活经验描述位置上升到用数学方法描述位置,旨在发展数学思考,培养学生的空间观念,为后续学习奠定基础。结合教学目标及学情实际,本节课的教学设计如下:
1.创设问题情境,激发学生的学习兴趣。
教学情境的创设,能激活学生已有的描述物体位置的经验,激发了学生的学习兴趣,使学生带着问题主动地投入到新课学习中。
2.引导探究,总结方法,培养学生的学习能力。
引导学生在自主探究、小组合作、讨论交流中进行理解、发现、归纳、总结,使学生掌握知识的同时,实现发展学生思维,培养学生学习能力的目的。
课前准备
教师准备 ppt课件
教学过程
提出问题,创设情境
师:上节课老师带领同学们去动物园转了一圈,大家都准确地找到了各个场馆的位置。请说说你们是怎样找到的。
生:我们首先要确定好要参观的场馆,然后利用场馆分布图以现在的位置为观测点,确定方向(或角度),再根据距离就能准确找到要去的场馆了。
师:回答得真好。乐乐去大鸣山游玩时迷失了方向,他想找到大本营的位置,你能帮他找到大本营吗?
设计意图:通过回顾确定位置的相关知识,有利于唤起学生已有的知识经验,为新课作铺垫。
自主探究,合作交流
1.出示大鸣山风景区的平面图。
(1)认真观察平面图,找一找,标出乐乐现在的位置(大鸣山)。(学生独立完成,集体订正)
(2)思考问题:要救出乐乐需要知道哪些条件?
(小组讨论后汇报结果)
生1:需要知道搜救原点是大鸣山,还要知道大本营在大鸣山的什么方向上。
生2:我认为不仅要知道大鸣山在大本营的什么方向上,还要知道大鸣山和大本营之间的距离。
师:你们同意哪一种说法呢?
生:我认为第二种说法能更准确地找到乐乐的位置。
(3)想一想,画一画,大本营在大鸣山的什么方向上,并测量出距离。
(学生独立思考、解决问题,然后各小组进行讨论与交流)
生展示成果,师小结:大本营在大鸣山北偏东45°方向,距离大鸣山大约560米。
设计意图:学生通过自主探究、合作交流得出了确定两地具体位置的方法和步骤。
2.下图是数学迷画的,你能看懂吗?说一说大本营的位置。
师:观察数学迷画的图,说一说与自己所画的有什么异同?说一说大本营的位置。
(小组交流、讨论异同点,并说出大本营的具体位置)
设计意图:在此环节中,让学生通过看一看、议一议等活动,让学生体会确定物体位置方法的多样性、数学与生活的紧密联系。
巩固练习
1.学生独立思考、自主完成教材68页1题,然后小组交流。
2.完成教材68页2题。(进一步巩固确定位置的方法及描述简单路线图的方法。结合具体情境,用自己的语言叙述如何确定物体的位置)
3.完成教材68页3题。
课堂小结
师:这节课我们学到了什么?以后我们出去游玩时要注意什么事项?
板书设计
确定位置(二)
画坐标图的步骤:
(1)确定观测点;
(2)从观测点引出横坐标和纵坐标,并把观测点和被观测点连起来;
(3)标出连线与横坐标或纵坐标的夹角;
(4)标出连线的长度。