高三数学教案5篇

时间:2023-01-03 作者:Iraqis 备课教案

随着新学期的开始,相信教师此时一定都在制定教案了,教案在撰写的过程中,教师一定要注意逻辑思路清晰,以下是范文社小编精心为您推荐的高三数学教案5篇,供大家参考。

高三数学教案5篇

高三数学教案篇1

一、教学内容分析

本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。突出体现了优化思想,与数形结合的思想。本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

二、学生学习情况分析

本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解.但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

三、设计思想

以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。

四、教学目标

1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次

不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、

可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应解;

2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力;

在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、化归能力、探索能力、合情推理能力;

3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性.

五、教学重点和难点

重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简单的二元线性规划问题;

难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过

程探究,简单的二元线性规划问题的图解法的探究.

六、教学基本流程

第一课时,利用生动的情景激起学生求知的xx,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔.通过学生的自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

第二课时,重现引例,在学生的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域.让学生对例3、例4进行分析与讨论进一步完善这一过程,突破本小节的第二个难点。

第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让学生思考探究,利用特殊值进行猜测,找到方案;再引导学生对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完美的解答;回顾整个探究过程,让学生在讨论中达成共识,总结出简单线性规划问题的图解法的基本步骤.通过例5的展示让学生从动态的角度感受图解法.最后再现情景1,并对之作出完美的解答。

第四课时,给出新的引例,让学生体会到线性规划问题的普遍性.让学生讨论分析,对引例给出解答,并综合前三个课时的教学内容,连缀成线,总结出简单线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程.总结线性规划的应用性问题的几种类型,让学生更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

高三数学教案篇2

数列

§3.1.1数列、数列的通项公式 目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。

重点:1数列的概念。按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。

2.数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。从映射、函数的观点看,数列可以看成是定义域为正整数集n-(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。难点:根据数列前几项的特点,以现规律后写出数列的通项公式。给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。过程:一、从实例引入(p110)1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数

3. 4. -1的正整数次幂:-1,1,-1,1,…

5. 无穷多个数排成一列数:1,1,1,1,…

二、提出课题:数列

1. 数列的定义:按一定次序排列的一列数(数列的有序性)

2. 名称:项,序号,一般公式 ,表示法

3. 通项公式: 与 之间的函数关系式如 数列1: 数列2: 数列4:

4. 分类:递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。

5. 实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集 n-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。

6. 用图象表示:— 是一群孤立的点 例一 (p111 例一 略)

三、关于数列的通项公式1. 不是每一个数列都能写出其通项公式 (如数列3)

2. 数列的通项公式不唯一 如: 数列4可写成 和

3. 已知通项公式可写出数列的任一项,因此通项公式十分重要例二 (p111 例二)略

四、补充例题:写出下面数列的一个通项公式,使它的`前 项分别是下列各数:1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , ,

五、小结:1.数列的有关概念2.观察法求数列的通项公式

六、作业 : 练习 p112 习题 3.1(p114)1、2

七、练习:1.观察下面数列的特点,用适当的数填空,关写出每个数列的一个通项公式;(1) , , ,( ), , …(2) ,( ), , , …

2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、 。

3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式

4.已知数列an的前4项为0, ,0, ,则下列各式 ①an= ②an= ③an= 其中可作为数列{an}通项公式的是 a ① b ①② c ②③ d ①②③

5.已知数列1, , , ,3, …, ,…,则 是这个数列的( ) a. 第10项 b.第11项 c.第12项 d.第21项

6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。

7.设函数 ( ),数列{an}满足 (1)求数列{an}的通项公式;(2)判断数列{an}的单调性。

8.在数列{an}中,an=(1)求证:数列{an}先递增后递减;(2)求数列{an}的最大项。 答案:1. (1) ,an= (2) ,an= 2.(1)an= (2)an= (3)an= (4)an= 3.an= 或an=这里借助了数列1,0,1,0,1,0…的通项公式an=。4.d 5.b 6. an=4n-2

7.(1)an= (2)

高三数学教案篇3

一、教学过程

1.复习。

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=x3的反函数。

2.新课。

先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):

教师在画出上述图象的学生中选定'

生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

生2:这是y=x3的反函数y=的图象。

师:对,但是怎么会得到这个图象,请大家讨论。

(学生展开讨论,但找不出原因。)

师:我们请生1再给大家演示一下,大家帮他找找原因。

(生1将他的制作过程重新重复了一次。)

生3:问题出在他选择的次序不对。

师:哪个次序?

生3:作点b前,选择xa和xa3为b的坐标时,他先选择xa3,后选择xa,作出来的点的坐标为(xa3,xa),而不是(xa,xa3)。

师:是这样吗?我们请生1再做一次。

(这次生1在做的过程当中,按xa、xa3的次序选择,果然得到函数y=x3的图象。)

师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?

(学生再次陷入思考,一会儿有学生举手。)

师:我们请生4来告诉大家。

生4:因为他这样做,正好是将y=x3上的点b(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。

师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?

(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)

师:怎么由y=x3的图象得到y=的图象?

生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。

师:将横坐标与纵坐标互换?怎么换?

(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。)

师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?

(学生重新开始观察这两个函数的图象,一会儿有学生举手。)

生6:我发现这两个图象应是关于某条直线对称。

师:能说说是关于哪条直线对称吗?

生6:我还没找出来。

(接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)

学生通过移动点a(点b、c随之移动)后发现,bc的中点m在同一条直线上,这条直线就是两函数图象的对称轴,在追踪m点后,发现中点的轨迹是直线y=x。

生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。

师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。

(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)

还是有部分学生举手,因为他们画出了如下图象(图3):

教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈r)没有反函数,②也不是函数的图象。

最后教师与学生一起总结:

点(x,y)与点(y,x)关于直线y=x对称;

函数及其反函数的图象关于直线y=x对称。

二、反思与点评

1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。

2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。

计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。

在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。

当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。

3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。

高三数学教案篇4

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

?重点难点】

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

?内容分析】

1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基??

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

高三数学教案篇5

学习目标 1、通过讲评使学生进一步理解周长的含义,进一步巩固对长方形、正方形周长的计算及应用。

2、抓住典型题目和共性问题,引导学生把握解题思路,总结解题一般规律,培养学生灵活的思维能力。 重点 理解周长的意义 巩固长方形、正方形周长的计算公式及其在实际生活中的灵活应用 教学法 分析总结 合作交流 难点 通过处理典型题目和共性问题,引导学生把握解题思路,培养学生灵活的思维能力和严谨的态度。

教学具 第五单元测试卷 教学内容 教 学 过 程 设计说明 个案补充 分析本次测试中学生的成绩情况及存在的主要问题。 学生自改会做而出错的目

例:一、(3)一个长方形长9厘米,宽比长少3厘米,它的周长是( )(可能有的学生把宽看成3)。 二、1.周长相等的两个正方形,边长也一定相等。( )

例:二、5.由两个相同的正方形拼成一个长方形,它的周长是两个正方形周长之和。( )

三、3.下面三个图形,哪个图形的周长最长?( )

例: 一个长方形和一个正方形的周长相等.长方形的长为12米,宽为8米,那么正方形的边长为多少米?(6分) 1、用一根长为15厘米的毛线围成一个正方形,那么正方形的周长是( )厘米。 2、一对长方形的枕头,长45厘米,宽3分米,四周缝上花边,一共需要用多少厘米的花边? 3.有一个正方形木框,边长10厘米,要把它改装成长15厘米的长方形,宽应多少厘米?

一、成绩分析 1、分析成绩 2、简单介绍本次测试存在的主要问题: a、计算出错 b、公式不能灵活运用 c、不理解题意(题意分析不透)

二、补救矫正 1、自我矫正 一般要给学生5—8分钟的时间,让他们在规定的时间内对错题进行分析,发现错因,产生疑问,并解决部分问题。 a、错题分类 一类:会做却做错的题;二类:模棱两可似是而非的题;三类:不会做的题。 b、分析错因及时纠错 2、小组矫正 a、主动向小组其他同学请教,重点探索方法和思路 b、小组内思考、讨论、交流,解决存在的大部分问题。 c、留2、3分钟自己分析出错的原因

三、典型分析 1、 找出由学生自主不能解决的问题,也就是学生学习中的`难点,由师生共同再阅读、再分析、再解答。 2、示错例,找错因,引以为戒 此题学生可能会因对题意不理解而出现错误,本题中既考察了学生对长方形周长公式的掌握,也考察了对正方形公式的应用,更重要的是培养学生认真审题的好习惯。

四、对应练习 1、师找出本次测试中失误的集中点、重难点,编写适量针对性的练习题。(课前完成) 2、学生独立完成。 3、集体订正。

五、课堂小结 谈谈自己在知识结构、解题技巧、考试心得等方面的收获。 通过教师的介绍,使学生对本次测试有一个明确的认识,从而正视自己的成绩。 充分发挥学生的主体地位,再给学生一次机会,让他们在规定的时间内对错题进行分析,发现错因,产生疑问,并解决部分问题。 通过小组内同学们的讨论、争辩,不仅解决了存在的大部分问题,拓宽了知识面,而且培养了学生的合作精神,激发了学生的问题意识,提高了课堂效率。 通过错例分析,解决了试卷中的难点,通过对典型问题的分析,培养了学生从多角度、多层次思考问题,举一反三、触类旁通的能力。 有针对性的进一步巩固矫正效果,形成技能。 教学反思