高三数学教案参考5篇

时间:2023-01-03 作者:Cold-blooded 备课教案

在新学期教学工作前,相信教师一定都有事先准备一份教案,教案在撰写的过程中,教师一定要注意逻辑思路清晰,范文社小编今天就为您带来了高三数学教案参考5篇,相信一定会对你有所帮助。

高三数学教案参考5篇

高三数学教案篇1

1、教材分析

本节课位于数学必修一第一章第一节-----集合的第一课时,主要学习集合的基本概念与表示方法,在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,;在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

2、教学目标

知识与技能目标

①通过实例了解集合的含义;

②知道常用数集及其专用记号;

③了解集合中元素的确定性、互异性、无序性;

④会用集合语言表示有关数学对象。

⑤能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

过程与方法目标

①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

情感态度与价值观目标

培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

3、教学重难点

重点:集合的基本概念与表示方法。

难点:运用集合的三种常用表示方法正确表示一些简单的集合

4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

6、教学思路:创设情境,从具体实例引入新课

师生共同分析实例,得出集合含义,明确有关规定

师生共同分析例子,学习元素与集合的关系及记号

自主学习常用数集及其记号

自主学习集合的两种表示方法

课堂练习,小结与课后作业

高三数学教案篇2

高中数学命题教案

命题及其关系

1.1.1命题及其关系

一、课前小练:阅读下列语句,你能判断它们的真假吗?

(1)矩形的对角线相等;

(2)3 ;

(3)3 吗?

(4)8是24的约数;

(5)两条直线相交,有且只有一个交点;

(6)他是个高个子.

二、新课内容:

1.命题的概念:

①命题:可以判断真假的陈述句叫做命题(proposition).

上述6个语句中,哪些是命题.

②真命题:判断为真的语句叫做真命题(true proposition);

假命题:判断为假的语句叫做假命题(false proposition).

上述5个命题中,哪些为真命题?哪些为假命题?

③例1:判断下列语句中哪些是命题?是真命题还是假命题?

(1)空集是任何集合的子集;

(2)若整数 是素数,则 是奇数;

(3)2小于或等于2;

(4)对数函数是增函数吗?

(5) ;

(6)平面内不相交的两条直线一定平行;

(7)明天下雨.

(学生自练 个别回答 教师点评)

④探究:学生自我举出一些命题,并判断它们的真假.

2. 将一个命题改写成“若 ,则 ”的形式:

三、练习:教材 p4 1、2、3

四、作业:

1、教材p8第1题

2、作业本1-10

五、课后反思

命题教案

课题1.1.1命题及其关系(一)课型新授课

目标

1)知识方法目标

了解命题的概念,

2)能力目标

会判断一个命题的真假,并会将一个命题改写成“若 ,则 ”的形式.

重点

难点

1)重点:命题的改写

2)难点:命题概念的理解,命题的条件与结论区分

教法与学法

教法:

教学过程备注

1.课题引入

(创设情景)

阅读下列语句,你能判断它们的真假吗?

(1)矩形的对角线相等;

(2)3 ;

(3)3 吗?

(4)8是24的约数;

(5)两条直线相交,有且只有一个交点;

(6)他是个高个子.

2.问题探究

1)难点突破

2)探究方式

3)探究步骤

4)高潮设计

1.命题的概念:

①命题:可以判断真假的陈述句叫做命题(proposition).

上述6个语句中,(1)(2)(4)(5)(6)是命题.

②真命题:判断为真的语句叫做真命题(true proposition);

假命题:判断为假的语句叫做假命题(false proposition).

上述5个命题中,(2)是假命题,其它4个都是真命题.

③例1:判断下列语句中哪些是命题?是真命题还是假命题?

(1)空集是任何集合的子集;

(2)若整数 是素数,则 是奇数;

(3)2小于或等于2;

(4)对数函数是增函数吗?

(5) ;

(6)平面内不相交的两条直线一定平行;

(7)明天下雨.

(学生自练 个别回答 教师点评)

④探究:学生自我举出一些命题,并判断它们的真假.

2. 将一个命题改写成“若 ,则 ”的形式:

①例1中的(2)就是一个“若 ,则 ”的命题形式,我们把其中的 叫做命题的'条件, 叫做命题的结论.

②试将例1中的命题(6)改写成“若 ,则 ”的形式.

③例2:将下列命题改写成“若 ,则 ”的形式.

(1)两条直线相交有且只有一个交点;

(2)对顶角相等;

(3)全等的两个三角形面积也相等.

(学生自练 个别回答 教师点评)

3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若 ,则 ”的形式.

引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。

通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若 ,则 ”的形式,为后续的学习打好基础。

3.练习提高1. 练习:教材 p4 1、2、3

师生互动

4.作业设计

作业:

1、教材p8第1题

2、作业本1-10

5.课后反思

高三数学教案篇3

数学教案-直线

教学设计示例

一、素质教育目标

(一)知识教学点

1.了解直线的概念.

2.掌握直线的表示方法,直线的公理和相交直线的概念.

3.使学生熟悉简单的几何语句,并能画出正确的图形表示几何语句.

(二)能力训练点

通过一些几何语句(如:某点在直线上,即直线“经过”这点;过两点有且只有一条直线,“有且只有”的双重含义,即存在性和惟一性)的教学,训练学生准确地使用几何语言,并能画出正确的几何图形.学生通过“说”与“画”的尝试实践,体验领悟到“言”与“图”的辩证统一.通过教学培养学生严谨的学习作风、严密的思考方法及逻辑思维能力,这也是学习好数学必备的基本素质.

(三)德育渗透点

通过直线公理的讲解,举出实例说明它的应用.使学生体验到从实践到理论,在理论指导下再进行实践的认识过程,潜移默化地影响学生,形成其理论联系实际的思想方法,激励学生要勤于动脑、敢于实践.

(四)美育渗透点

通过对模型的观察,使学生体会物体的对称美,通过学生自己动手画直线体会直线美,逐步培养学生的几何美,激发学生的学习兴趣.

二、学法引导

1.教师教法:引导学生发现知识,并尝试指导与阅读相结合.

2.学生学法:自主式学习方法(学生自己阅读书本知识,总结学习成果)和小组讨论式学习方法.

三、重点、难点、疑点及解决办法

(-)重点

直线的表示方法,直线的公理及相交线.

(二)难点

两直线相交为什么只有一个交点的理解,直线公理的理解.

(三)疑点

两直线相交为什么只有一个交点?

(四)解决办法

通过实验法解决直线公理的理解;通过逆向思维解决两直线相交为什么只有一个交点的疑点.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片(软盘)、三角板、木条、铁钉.

六、师生互动活动设计

七、教学步骤

(一)明确目标

通过知识点教学,使学生理解和掌握直线及其性质,通过画图及对几何语言的认识培养学生图形结合的数学思维方式.

(二)整体感知

以情境教学为主,教师引导和指导,学生积极参与,逐步领悟,教师概括总结和学生自我学习评价相结合,提高课堂教学效益,充分体现以学为主的原则.

(三)教学过程

创设情境,引出课题

问题:投影仪显示本章开始的正十二面体的模型,学生观察这一复杂图形中有哪些是我们认识的简单图形?(学生会很快找出线段和角.)

演示:投影从正十二面体的模型中分离出某一部分,即线段、角.

引出课题:要掌握比较复杂的图形知识,需要从较简单的图形学起.本章我们就学习最简单的图形知识,即线段和角的知识,也就是我们从复杂图形中分离出来的两个图形.在这个基础上,以后我们再学习相交线、三角形、四边形等等.

?板书】第一章 线段 角 一、直线 射线 线段 1.1直线

探究新知

1.直线的概念

师:对于直线,我们并不陌生,小学就已经认识了它,你能否根据自己的理解,说出几种日常生活中“直线”形象的例子吗?

?教法说明】学生有小学的基础,会很快说出一些实际例子,如:黑板边缘、书本边缘、拉直的线、笔直的公路等等.教师要调动学生学习的积极性,引导学生展开想像的翅膀,充分发挥他们的想像力.

演示:学生发言的同时,教师利用电脑显示一些实例,如:黑板、书本、笔直公路等等.然后变换抽象成一直线.

师:我们在代数中,常用一条特殊的直线,你知道吗?

(学生会回想起数轴的概念,规定了原点、正方向和单位长度的直线.)

师小结:同学们回答得都很好,几何中的“直线”是向两方无限延伸的,我们可以用直尺画直线,但画出的只是直线的一部分.

2.直线的表示方法

学生活动:学生阅读课本第9页第四自然段,总结直线的表示方法.

?教法说明】对于直线的表示方法很简单,教师直接告诉学生,学生也会理解.但记忆不一定深,这种采取让学生自己阅读的方法,一是培养学生看书的习惯;二是培养学生的阅读能力,使学生爱看书且会看书.自己学到的知识要比教师直接告诉的记忆深刻得多.

由学生小结,得出直线的两种表示方法:

(1)用直线上的两个大写字母表示.如图:记作直线 .

(2)用一个小写字母表示.如图:记作直线 .

?教法说明】用字母表示图形,小学没有介绍,现在学生初步接触,所以教师这里要补充说明点的表示方法.同时指出:以后学习中,常用字母表示几何图形,便于说明与研究.

3.点和直线的位置

找一个学生在黑板上画一直线,另一个学生在黑板上找一点.然后,引导全体学生讨论:平面上一条直线和一个点会有几种位置关系呢?

师生共同总结:

(1) 点在直线上,如图,叙述方法:点 在直线 上,或直线 经过点 .

(2) 点在直线外,如图,叙述方法:点 在直线 外,或直线 不经过点 .

?教法说明】在点和直线的位置关系中,要注意几何语言的训练.点在直线上和点在直线外,各有两种不同的叙述方法,要反复练习,以培养他们几何语言的表达能力.

4.直线的公理

实验尝试:用一个铁钉把木条钉在小黑板上,让学生转动木条,并观察现象.教师在木条上加上一个钉子,再让学生转动,并观察现象.

提出问题:以上实验你认为说明了什么道理?

学生活动:学生分组讨论,相互纠正或补充.

师小结:经过一点有无数条直线,经过两点有一条直线,并且只有一条直线.同时板书公理内容.

[板书]公理:经过两点有一条直线,并且只有一条直线.简言之,过两点有且只有一条直线.

体验证实:教师小结后让学生在练习本上分别经过一点和两点画直线.

?教法说明】(1)学生通过实验,对直线公理有认识,但欲言之而不能,或虽能表达出意思但不严密.此时离不开教师的引导,教师一定要强调几何语言的严密性和准确性.向学生们讲清“有且只有”的两层含义.第一个“有”说明的是存在性,过两点有直线存在.“只有”说明的是惟一性,经过两点的直线不会多,只有一条.如果把直线公理说成是:“经过两点有一条直线”就是错误的.了.(2)公理得出后,让学生再次动手验证,使学生体会到公理的科学性,培养学生对待事物的科学态度,也便于学生对公理的记忆.(3)通过教师指导下的实验活动,激发了学生的学习兴趣,培养了学生勇于探索的精神,提高独立分析问题解决问题的能力.

解决问题:通过学生间的相互讨论、教师补充等手段,使学生了解直线公理的应用,如:木匠怎样在木料上画线;植树时怎样能使树坑排列整齐等等

?教法说明】通过公理在日常生活中的应用举例,使学生明白科学来源于生活并服务于生活的道理.只有现在好好学习,积累本领,长大后才能更好地报效祖国.并体会从实践到理论,再回到实践的认识过程.

5.相交线

师:根据直线公理,过两点有几条直线?

(学生会答出:有且只有一条.)

师:反过来,两条不同的直线可能同时经过两个点吗?

(学生容易答出:不能)

师:两条不同的直线不可能同时过两个点,也就是说,两条不同的直线不能有两个公共点,当然,也不能有更多的公共点.因此,我们得出一个新概念;

[板书]如果两条直线有一个交点,我们叫这两条直线相交.这个公共点叫做它们的交点,这两条直线叫相交直线.

如图,直线 和直线 相交于点 ,点 是直线 和直线 的交点.

?教法说明】两直线相交为什么只有一个交点,是本节课的难点.从 公理入手提出问题,再反过来考虑,这种逆向思维的方法使学生易于理解,突破难点,问题得以解决.

反馈练习

(出示投影1)

1.问答题

(1)经过一点能否画直线?能画几条?

(2)经过两点能否画直线?能画几条?

(3)只用直线上的一个点来表示直线是否可以?用直线上的两个点表示直线呢?

2.读出下列语句,并按照这些语句画图

(1)直线 经过点 .

(2)点 在直线 外.

(3)经过 点的三条直线.

(4)直线 与 相交于点 .

(5)直线 经过 、 、 三点,点 在点 与点 之间.

(6) 是直线 外一点,过 点有一直线 与直线 相交于点 .

?教法说明】问答题的目的是进一步理解巩固直线公理,作图的目的是训练学生的 “言”与“图”的转化能力.

(四)总结、扩展

以提问的形式,归纳出以下知识点:

八、布置作业

预习下节内容

补充:按照下面的图形说出几何语句.

(1) (2)

(3) (4)

(5)

附答案

补充:(1)直线 过 ( 点在直线 上).

(2)点 在直线 外(直线 不过 点).

(3)直线 、 相交于点 .

(4)直线 过 、 、 三点.

(5)直线 、 、 、都过点 .

思考题:课本第16页b组的第2题.

高三数学教案篇4

教学目标:

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:

掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程

一、复习

二、引入新课

1.假言推理

假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论

三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。

高三数学教案篇5

一.说教材

地位及重要性

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

教学目标

(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;

(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

教学重难点

重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

二.说教法

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。