解方程例4教案5篇

时间:2023-01-21 作者:Cold-blooded 备课教案

作为一名教师,我们必须按照教学要求来制定教案,只有在认真分析了教学目标后动笔,我们写出的教案才有意义,下面是范文社小编为您分享的解方程例4教案5篇,感谢您的参阅。

解方程例4教案5篇

解方程例4教案篇1

科目

数学

年级

九年级

教学时间

一课时

学习者分析

本班有学生53人,数学课还比较喜欢,学习热情也较高,课堂气氛比较活跃。学生在学过一元一次方程的基础上学习,还是对方程有一定的认识。所以老师放手让学生自学、合作的探究方式来学习此课。但有极少部分学生较懒,学习习惯差,不愿思考问题。总体来说学生喜欢动手操作,喜欢小组合作的学习方式。

教学目标

一、情感态度与价值观

1. 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情。

2. 感受数学的严谨性以及数学结论的确定性。

二、过程与方法

1. 通过观察,归纳一元二次方程概念的教学

2. 使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式。

三、知识与技能

1. 通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义。

2. 一元二次方程的一般形式及其有关概念

教学重点、难点

1.一元二次方程的概念及其一般形式和用一元二次方程有关概念解决问题。

2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。

教学资源

⑴每位学生制作一个无盖方盒

⑵每人一份印刷练习题

⑶教师自制的多媒体课件

⑷上课环境为多媒体大屏幕环境

教学活动

教学活动1

??师生互动,激趣导入

情境创设(大屏幕投影教材24页):要设计一座2米高的人体雕塑,使雕塑的上部(腰上部)与下部(腰下部)的高度比,等于下部与全部(全身)的高度比,雕塑的下部应设计为多高?

学生根据等量关系:设雕塑下部高xm,于是得方程

x2=2(2-x)整理得x2+2x-4=0,这是什么方程,与以前学过的一元一次方程有什么不同,这节课我们就来学习它---------一元二次方程

教学活动2

??问题启发,合作探究

1.问题1(多媒体课件)有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?

学生结合手中学具思考怎么列方程

如果假设切去的正方形边长为x,那么盒底的长是________,宽是_____,根据方盒的底面积为3600cm2,得:_______.

整理,得:________.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

2.(出示排球邀请赛图片)

问题2要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?

单循环比赛是指就表示每个队要和其他所有的队都赛到了,如果有4个队总共赛_______场,5个队呢?8个队呢?n个队呢?

同学们用基本线段法和定点发射法总结规律:

场数=队数×(队数-1)÷2

场数=(队数-1)+(队数-2)+(队数-3)+。。。。。。+1

列方程得x(x-1)÷2=28 整理得x2-x=56解方程可以得出参赛队数。

3.学生活动,叙述概念

请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

4.追问条件,由一般式得出特殊式

(1)为什么a≠0?b和c能等于0吗?(2)特殊式:ax2+bx=0,ax2+c=0

教学活动3

?? 例题示范,巩固提高

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项、合并同类项等.

解:去括号,得:

40-16x-10x+4x2=18

移项,得:4x2-26x+22=0

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练)  将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

巩固练习

教材p27 练习1、2(每组出三名同学在四周黑板写出,分六组)

教学活动4

??自我检查,信息反馈

自我测试设计

一、选择题(5×4=20分)

1.在下列方程中,一元二次方程的个数是(  ).

①3x2+7=0  ②ax2+bx+c=0  ③(x-2)(x+5)=x2-1   ④3x2- =0

a.1个    b.2个    c.3个    d.4个

2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ).

a.2,3,-6    b.2,-3,18    c.2,-3,6     d.2,3,6

3.px2-3x+p2-q=0是关于x的一元二次方程,则(  ).

a.p=1     b.p>0     c.p≠0     d.p为任意实数

4.关于x的方程(m2-4)x2+mx-m=0是一元二次方程的条件是()

a.m≠0    b.m≠2   c.m= -2 d.m≠±2

二、填空题(4×5=20分)

1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.

2.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_________

3.关于x的方程(m+1)xm-1+mx-1=0是一元一次方程,则m=________

三.应用题(20分)

?九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

整理、化简,得:__________.

程序 :1.学生自己独立完成2.老师给组长副组长打分3.组长给组员打分4.学生交流疑难杂症5.学生总结易错点和方法6.老师作最后强调。

教学活动5

??归纳总结,畅谈收获

本节课要掌握:

(1)       一元二次方程的概念;

(2)       一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

(3)       定义要条件化:二次项系数不等于0的条件

(4)       利用一元二次方程解决实际生活问题。

教学活动6

??拓展迁移,提升能力

例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.

证明:m2-8m+17=(m-4)2+1

∵(m-4)2≥0

∴(m-4)2+1>0,即(m-4)2+1≠0

∴不论m取何值,该方程都是一元二次方程.

解方程例4教案篇2

学习目标

1、 会设未知数,并利用问题中的相等关系 列方程,且正确求解

2、 会用一元一次方程解决工程问题

重点难点

重点:建立一 元一次方程解决 实际问题

难点:探究实际问题与一元一次方程的关系

教学流程

师生活动 时间

复备标注

一、 复习:

解下列方程:

1.9-3y=5y+5

2、

二、新授

例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

分析:这里可以把总工作量看做1。思考

人均效率(一个人做1小时完成的工作量)为 。

由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。

这项工作分两 段完成,两段完成的工作量之和为 。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得

?

去分母, 得 4x+8(x+2)=-1701

去括号,得 4x+8x+16=40

移项及合并同类项,得

12x=24

系数化为1,得 x=-243.

所以 -3x=729

9x=-2187.

答:这三个数是-243,729,-2187。

师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

例4 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一 方 式二

月租费 30元/月 0

本地通话费 0.30元/月 0.40元/分

(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

解:(1)

方式一 方式二

200分 90元 80元

350分 135元 140元

( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

0.4t=30+0.3t

移项,得 0. 4t -0.3t =30

合并同类项,得 0.1t=30

系数化为1,得 t=300

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

归纳:用一元一次方程分析和解决实际问题的基本过程如下

三、巩固练习:94页9、10

四、达标测试 :《名校》55页1.2.3.

五、课堂小结:

(1) 这节 课我有哪些收获?

(2) 我应该注意什么问题?

六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答。

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

学生独立解方程方程的解是不是应用题的解

教师强调解决 问题的分析思路

学生读题,分析表格中的信息

教 师根据学生的分析再做补充

学生思考问题

教师根据学生的解答,进行规范分析和解答

解方程例4教案篇3

有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?

分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。

设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。

解:设有胶鞋x双,则有布鞋(46-x)双。

7.5x-5.9(46-x)=10,

7.5x-271.4+5.9x=10,

13.4x=281.4,

x=21。

答:胶鞋有21双。

分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以

答:袋中共有74个球。

在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。

例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[

分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

80x-40=(30x+40)×2,

80x-40=60x+80,

20x=120,

x=6(座)。

分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

(x-40)×80=(2x+40)×30,

80x-3200=60x+1200,

20x=4400,

x=220(米3)。

由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

同理,也可设有红砖x米3。留给同学们做练习。

例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?

分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程

x-10=[(x-10)×2-9]×5,

x-10=(2x-29)×5,

x-10=10x-145,

9x=135,

x=15(个)。

例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:

还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?

分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,

0×7+1×5+2×4+6×(x-7-5-4)

= 5+8+6×(x-16)

= 6x-83,

也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1,

= 3×(x-8)+24+36+10

= 3x+46。

由此可得方程

6x-83=3x+46,

3x=129,

x=43(人)。

例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。

分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程

4÷(150-3x)=8÷(150-x),

4×(150-x)=8×(150-3x),

600-4x=1200-24x,

20x=600,

x=30(千克)。

练习23

还剩60元。问:甲、乙二人各有存款多少元?

有多少溶液?

3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?

4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?

5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?

含金多少克?

7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?

解方程例4教案篇4

教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

教学目标:

1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

教学过程:

一、练习与应用

1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)

二、探索与实践

1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨

三、与反思

在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

四、阅读“你知道吗”可以再查找资料,详细了解。

五、课堂这节课我们复习了哪些内容?你有了哪些收获?

解方程例4教案篇5

?教学目的】  精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的'原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

?课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

?典型例题】

例1   下列方程中两实数根之和为2的方程是

(a)   x2+2x+3=0     (b) x2-2x+3=0    (c)  x2-2x-3=0      (d)  x2+2x+3=0

错答: b

正解: c

错因剖析:由根与系数的关系得x1+x2=2,极易误选b,又考虑到方程有实数根,故由△可知,方程b无实数根,方程c合适。

例2   若关于x的方程x2+2(k+2)x+k2=0  两个实数根之和大于-4,则k的取值范围是(     )

(a)   k>-1     (b)  k<0    (c) -1< k<0    (d) -1≤k<0

错解 :b

正解:d

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(2000广西中考题) 已知关于x的一元二次方程(1-2k)x2-2