教案在起草的过程中,老师需要注意与时俱进,制定教案是每一个教师都要学会的技能,下面是范文社小编为您分享的小学数学轴对称教案7篇,感谢您的参阅。
小学数学轴对称教案篇1
教学内容:
九年义务教育课本(试用本)三年级第一学期p54—55
教学目标:
1、初步认识轴对称图形,知道轴对称的含义。
2、会判断哪些图形是轴对称图形,能找出轴对称图形的对称轴。
3、在观察、思考、和动手折的过程中,认识和找出对称轴,发展空间想象能力。
4、领略自然界的美妙与对称世界的神奇,激发数学审美情趣,领会数学美。
5、通过小组协作和交流活动,提高协作学习的意识和研究探索的兴趣。
教学重点:
通过观察、动手操作,初步认识轴对称图形。
教学难点:
按对称轴将轴对称图形画完整
教学准备:
多媒体课件,剪刀,彩纸
教学过程:
一、生活经验,引入新知:
1、出示图片
2、问:这些图形美吗?它们有什么共同点?
反馈:它们都是对称图形。
追问:什么叫做对称?
预设:1)左右相等。2)左右图形大小相等、形状相同。……
3、判断:上面的图形是不是从下面剪出的,为什么?
反馈:第一组是,第二组不是,因为第二组图形左右不对称。
总:生活中也有不少对称现象。
4、想一想:我们学过哪些图形也是对称的?
生:反馈。
找一找:打开袋子,找一找对称图形。
学生反馈。
预设1:1、3、5、6、7、8
预设2:1、3、5、7、8
2)问:你有办法证明你的猜想吗?
反馈:对折。
小组合作:验证猜想。
总:像这样对折后,左右两边图形能完全重合的叫做轴对称图形。
出示课题:轴对称图形。
二、巩固新知,认识对称轴:
1、拼一拼:用两个平行四边形平成一个轴对称图形。
反馈:
2、下面的图形是轴对称图形?(用方格纸判断)
反馈:小火车并不是轴对称图形。松树和五角星是轴对称图形。
问:你是如何用方格纸判断图形是否对称的?
生:对准图形的顶点判断。然后数方格。
总结:图形对折以后,两边的部分能完全重合。它的这条折痕所在的直线,我们叫它对称轴(板书)
?策略说明:通过“观察、分类、验证(折)、”等一系列活动,让学生认识轴对称图形,知道轴对称的含义。培养学生探索与实践能力,发展学生的空间概念。】
三、数对称轴,拓展思维
1、找一找,数一数
交流反馈。
问:观察表格你发现了什么?
反馈:图形的边越多,对称轴就越多。……
2、做一做:设计一个轴对称图形,比一比谁剪的对称轴最多?
?策略说明:通过欣赏生活中的轴对称图形,剪一个轴对称图形,让学生感受和谐的对称美,让学生感到轴对称就在我们身边,同时陶冶学生的情操】
七、总结
今天,我们在课堂上体会了怎样的图形是轴对称图形。
八、作业布置:《练习册》p71—72
?板书设计】
轴对称图形
对折后两边能完全重合的图形
2条4条0条无数条1条
画轴对称图形要点:先找对称轴,然后找对称点,再连线。
?策略说明:通过欣赏生活中的轴对称图形,剪一个轴对称图形,让学生感受和谐的对称美,让学生感到轴对称就在我们身边,同时陶冶学生的情操】
七、总结
今天,我们在课堂上体会了怎样的图形是轴对称图形。
八、作业布置:《练习册》p71—72
?板书设计】
轴对称图形
对折后两边能完全重合的图形
2条4条0 无数条1条
小学数学轴对称教案篇2
一、教学目标:
1、学生通过观察、操作,初步感知轴对称现象。
2、让学生能在方格纸上画出简单的轴对称图形。
3、通过观察操作活动,发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美,增强学生学习的兴趣。
二、教学重点:
观察操作,初步感知轴对称现象。
三、教学难点:
结合实例感知轴对称现象。
四、教具准备:
实体标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形
五、学具准备:
图画纸、彩色纸、剪刀、实体标本、树叶若干片、胶水若干瓶、图形、画有等距离点子的方格纸。
六、教学过程:
观察激情:
教师出示实物标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形。这些昆虫标本、树叶及图形好看吗?学生被这些鲜艳的色彩、美丽的图案吸引住了,异口同声地说:“很美,很漂亮”。“他们有什么特征?”生:“两边的形状是一样的”。“你在日常生活中还见过类似特征的东西吗?”同学们纷纷举手抢答,教师根据学生的回答(如飞机、剪刀、花瓶、黑板、镜子等)把这些图形贴或画在黑板上,接着说:“今天我们一起来认识、研究这类图形有什么共同的特征,通过你们自己动手、动脑学会一种新本领,并运用你学到的新本领设计出许多更多、更美的东西和图案,使我们的生活变的更丰富,美丽。”
操作明理:
剪剪、折折、发现特征。
(1)指导学生把图画纸对折,如左图画出小树图。用剪刀沿图案剪下来,打开观察。
(2)自己在用一张彩色指对折,在折好的一侧画己想画图形的一半,在剪下来打开(有的是一朵花、有的是一片树叶或各种装饰图案等)教师问:“这些图形虽各不相同,但它们有一个共同的特征,你能找出来吗?”(两半图形完全相同,大小一样)。
(3)请学生把打开的两半、再沿折痕对折,你又发现了什么?(两半完全重合)
(4)教师把印有下列图案的工作纸、分别发给每个小组,要求照刚才的方法对折观察,讨论这些图形也有什么特征。
师生共同概括出:如果把一个图形沿着一条直线对折过来,在直线两边的图形完全重合,这种图形就是轴对称图形,折痕所在的这条直线是这个图形的对称轴。
强化新知
(1)研究讨论刚才同学们举例说出的图形(飞机、剪刀......等)是不是轴对称图形?为什么?
(2)教师出示下列图形,引导学生思考:
那些图是轴对称图形?如何标准地找出它的对称轴。
(把图形对折,如果两边能完全重合,便是轴对称图形,折痕就是这个图形的对称轴)
引导发现,拓开思路。
学生说一说生活中的那些东西是对称图形?你能找出蜻蜓、树叶、蝴蝶、北京脸谱的对称轴吗?使学生了解对称在生活中的应用性。
运用提高、发展思维。
(1)比一比谁用树叶拼成的轴对称图形最多、变化多。
(2)下列图形是轴对称图形吗?是轴对称图形的请画出对称轴?
(课本68页的做一做)
(3)小猴不小心,把小花猫漂亮的照片污损了一部分,你能想办法帮帮小猴把污损的部分恢复原样吗?
(4)比一比,谁在方格纸上设计的轴对称图形最美,(选佳作贴在黑板上,及时反馈、、欣赏)。
课堂
什么是轴对称图形,怎样准确地找出它的对称轴,这就是我们今天学到的新本领。轴对称图形真的很美丽,因此被广泛应用于服装、家具、交通工具、建筑等各方面的设计中。希能运用今天所学的知识把我们的环境装扮得更美丽。
小学数学轴对称教案篇3
教学目标
1、知道镜像对称图形的特点。
2、通过学生活动,正确体会镜像对称的相对性。
3、培养学生的合作意识,让学生在合作中交流、学习、互动。
教学重难点
体会镜像对称的相对性。
教学具准备
镜子、教科书第71页的开放题、卡片
教学过程
一、玩一玩镜子,创设情境
小朋友们,今天这节课我们来玩一玩镜子,好吗?(每人一面小镜子)
师:你在镜子里看到了什么?
生:我看到了自己;我看到了书;我看到了黑板……
师:这是怎么回事?
二、引导探索,体验镜像对称的特点
1、出示教科书第69页的主题图,请学生仔细观察。
(1)师:这幅图画中,怎么会出现两栋房子、六只天鹅?怎么岸上有树,水底也有树?
(2)生:下面的房子、天鹅、树是水里的影子。
师:(放大房子图)水上的房子和水下的房子是相同的吗?它们的方向怎样?
生:样子相同,但方向相反。
师:其实这也是数学知识,是一种镜面对称。(出示课题)
2、请学生用手中的镜子做游戏。
(1)发给学生只有半边图象的卡片,请他们想办法猜出另半边图象是什么?(小组活动)
小组汇报:用镜子照;把卡片对折……
(2)用镜子照自己的脸并做各种面部表情,同时观察镜子里的你面部表情的变化。
(3)出示教科书中第69页的小朋友照镜子图(例3)
师:这位小朋友在干什么?镜子里面的小朋友又在干什么?
3、师说:“小朋友们,让我们来照照镜子吧,好吗?”出示三面穿衣镜,请学生在镜子面前表演各种动作,同时请学生说出镜子里面的自己动作是怎样的。(小组活动,教师参与其中。)
生:我向前走一步,镜子里的我也向前走一步。
镜子里的我左手拿笔,右手拿本子,镜子外面的我左本子,右手拿笔。
我往左走,走镜子里的我往右走。
学生任意做动作……
三、运用拓展
1、判断。哪个是你在镜子里看到的样子?圈出来。(教科书第71页第5题)
2、找朋友。
3、思考题:第71页第1题、2题。
(1)看镜子写数
(2)看镜子写时间
四、小结评价
师:看,照镜子、水面倒影等等这些生活中的事就是数学知识,你知道了吗?
小学数学轴对称教案篇4
优秀教案片段:
(师利用多媒体课件出示一些轴对称图形)
师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?
生:这些图形的两边都一样。
生:这些图形都是对称的。
师:你们想自身动手做一个漂亮的对称图形吗?
生:想。
师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。
设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。
(剪图形活动结束)
师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。
生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)
师:请一位小朋友说一说你做的是什么图形?你是怎么做的?
生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。
师:你知道利用工具来做,真不简单,还有谁愿意说?
生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。
师:为什么要先把一张纸对折?
生:因为假如不对折,剪出的图形两边就不一样大了。
(仍有同学手高高举起)
师:还有人想说呀?下面就请你们把剪好的图形在小组内交流展示,互相说一说自身是怎么做的?
设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的特征。
师:(出示蝴蝶图形做示范)请小朋友们把你们剪好的图形像老师这样对折,看一看、比一比对折后两边的图形,你发现了什么?
生:对折后,两边的图形重合了。
师:(出示一片不对称的枫叶图形)老师这儿还有一个图形,现在我把它也对折,老师手中的图形对折后的情况和你手中的图形对折后的情况一样吗?
生:不一样。
师:哪些地方不一样?
生:(指着老师手中的枫叶图形)
这个图形对折后两边的图形不一样大,一边大,一边小。
老师手中的图形对折后,两边的图形没有重合完,下边还多出来一局部。
师:(趁机问)你们手中的图形对折后,是怎样重合的?
生:全部重合完了。
师:有没有多出来的局部?
生:没有。
师:有没有缺少的局部?
生:没有。
师:(指着同学的图形)这种重合就叫做完全重合。
师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。
设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。
师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?
生:(中间有1条线)
师:这条线是怎么得来的?
生:刚才我们对折的时候留下来的折痕。
师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?
生:对折的。
师:假如我们不沿着这条直线对折会怎么样?
生:两边的图形就不能完全重合了。
师:这说明这条线怎么样?
生:很重要。
师:你能给这条线取个名字吗?
生:中间线。
师:为什么把它叫做中间线?说说你的理由好吗?
生:因为这条线在这个图形的正中间,所以我把它叫做中间线。
师:还有谁想说?
生:对折线,因为这条线是我们对折后留下来的。
生:重合线,因为沿着这条线对折两边的图形就完全重合了。
师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?
(课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)
设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。
小学数学轴对称教案篇5
学情分析:由于本教材是三年级下册的教学内容,所借用的则是二年级的学生。由于学生年龄小,自主探究的能力不强,如何让其在有限的时间和空间内,积极主动地参与到各个学习活动中,理解轴对称的含义,创造出轴对称图形,是本节课所需解决的问题。
设计理念:图形特征的探究,方法应该是多元化的,而合作的学习方式能充分展示学生的各种思维方式,张扬个性,更好地培养学生的学习能力。为此,我设计了以下的教学活动。
教学目标:
1、使学生初步认识轴对称图形,理解轴对称图形的含义,能用自己的方法创造出轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略轴对称图形的美妙与神奇,激发学生的数学审美情趣。
重点:让学生感知对称现象,认识轴对称图形。难点:判别轴对称图形方法的得出。
教学过程:
一、创设情景,激趣导入。
(1)出示眼睛不对称的娃娃头像图片。学生发表意见,引出课题。
师:在我们生活当中,有许多事物都是因为有了对称才产生美,今天我们就一起去认识有着对称美的轴对称图形。
(创设贴近学生心理特点和认知水平的情景,自然而然把学生引入新课。)
二、感悟特征,“识”对称。
1.出示天安门、飞机、奖杯、等图片,引导学生观察,说出它们的共同点。
2.引导学生动手操作。(课本附页的图形)。
引导学生通过动手折一折、比一比,感受这些图形“对折后两边完全重合”的特征。
3.出示各种几何图形,让学生小组合作,探究其是否对称。
4.认识轴对称图形、对称轴定义
师:像这样对折后,能完全重合的图形叫做:轴对称图形。(板书:对折 完全重合)。
把轴对称图形对折后,折痕所在的这条直线称为:对称轴。(板书:折痕 对称轴)。
(本环节,放手让学生操作、交流、体会。让他们在自主探索的过程中感悟特征。)
三、深化认识,“做”对称。
(1)让学生动手操作,创造轴对称图形。(学生操作,教师巡视)
引导学生说说自己是怎么创造的,在交流中进一步深化学生对轴对称图形特征的认识。
(2)展示学生作品。说说各自的创作方法。
(在本环节设计了动手操作活动,使学生在获得发展的过程中愉悦身心,张扬个性。)
四、多向拓展,“辩”对称。
1.课件出示:天天开心。(心:是剪出来的轴对称图形)
引导学生观察,发现“天”字也是轴对称的图形。
2.出示字母: b a n g
引导学生判断各个字母是否轴对称图形,出现争议的字母b,引导学生验证结果。
3.挑战难题,激励优胜。
①“木”字的一半②看似轴对称的“奉”字,让学生判断分析,合成 “棒”字激励学生。
4.指导学生掌握学习方法:(猜测——验证——总结)
5.引导学生列举生活中的例子。
(多向拓展,让学生感悟数学在我们生活中无处不在。)
五、升华认识,赏对称。
1、欣赏短片
2、说一说。
出示短片中不止一个对称轴的图片,让学生利用自己的认知能力说一说,为以后的学习铺垫。
(通过赏析,引导学生感受生活的美妙与神奇,激发学生发现美、创造美的积极情感。)
六、课堂小结
出示两幅是轴对称的表情图片,让学生说说自己今天的收获。(认知的、情感的)
(本环节,既让学生感悟了成功的喜悦,也合理地整理了课堂的知识点。)
师:轴对称图形是和谐、美丽的,而且在生活中发挥着重要的作用。最后,老师希望大家在以后的学习生活中,能继续用数学的眼光去观察生活,欣赏生活。
板书设计: 轴对称图形
(猜测——验证——总结)
对折 完全重合
折痕 对称轴
教学反思:我在本节课让学生通过折一折,比一比,摸一摸等直观手段,让学生初步认识了轴对称现象,还有轴对称图形,让学生能以新的角度去观察物体,研究物体,体验它们的对称美。我这节课最大的遗憾是没有提供一个让学生充分展示的平台,没有给予充足的时间学生表达自己的观点。
小学数学轴对称教案篇6
课题:1.1~1.4复习(初二上数学)b版
课型:复习
学习目标(学习重点):
1、了解轴对称与轴对称图形,会准确画出轴对称 图形,找出对称轴、对称点等、
2、能熟练应用轴对称的性质、
3、复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用、
例题:
例1、(1)下列说法中,正确的个数是( )
①轴对 称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言、
a、1个 b、2个 c、3个 d、4个
(2)如图在一个规格为6 ×12(即6×12个小正方形)的球台上,有两个小球 a,b。若击打小球a,经过球台边的反弹后,恰好击中小球b,那么小球a击出时,应瞄准球台边上的点( )
a、p1 b、p2 c、p3 d、p4
例2、作图题(1)作 出图1中△abc关于直线l的对称图形;
(2)如图2,∠bac=60°,点p在边ac上,试用带刻度的直尺和量角器,在∠bac内部找一点o,使点o到a、p的距离相等,且到∠bac的两边的距离相等、
图1 图2
例3、已知:如图,△abc中,△abc的外角平分线ad,交bc的垂直平分线于d点,de⊥ab于点e,df⊥ac于点f,
(1)求证:be=cf;
(2 )若ab=15,ac=7,求ae的长、
课后续助:
1、点a和点b关于直线l对称 ,对直线l任意一点p,必有pa____pb
2、对称图形________有一条对称轴,________有两条对称轴,_____ ___有四条对 称轴,_______有无数条对称轴。(各填上一个图形即可) 、
3、到三角形的三个顶点的距离相等的点是___________的交点、到三角形的三边的距离相等的点是___________的交点、
4、如果△ a bc与△a/b/c/关于直线l对称,且∠a=500,∠b/=700,那么
∠c/ =___ _、
5。如图,点p在∠aob内,pm⊥oa于m,pn⊥ob于n,且pm=pn,连结op,则op是________________、依据是_______________ ________________、
6、如图,ab=ac,ac的垂直平分线交bc于d,垂足为e,
若ab=10,△abd的周长为23,求△abc的周长、
7、如图,有一个三角形纸片abc,ab=10cm,bc=7cm,ac=6cm,沿过点b的直线折叠这个三角形 ,使顶点c落在ab边上的点e处,折痕为bd,求△aed的周长、
8、如图,在△abc中,∠bac=90°,be平分∠abc,de⊥bc于d,de=dc、
求证:bc=ab+ae、
9、如图,在四边形abcd中,bc>ba,ad=cd,
bd平分∠abc,试说明:∠a+∠c=180°、
小学数学轴对称教案篇7
【教材分析】
本课教学苏教版《义务教育课程标准实验教科书数学》三年级(下册)第56~61页的内容,内容分属于空间与图形领域。《数学课程标准》关于“空间与图形”部分特别强调了内容的现实背景,强调关注学生的生活经验和活动经验。在日常生活中,有很多的轴对称图形,这充分体现了数学知识与生活的密切联系,通过观察生活中的对称,使学生体验“对称美”。通过学生动手创作轴对称图形,在创作中感知轴对称图形的特点,激发学生的兴趣。
【学情分析】
本节的教学对象是小学中年级学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的的内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,让学生自主探索,在探索中发现,在探索中学习。
【教学目标】
1、使学生联系生活中的具体物体,通过观察和动手操作,使学生初
步体会到生活中的对称现象,初步认识轴对称图形的一些基本特征。并初步知道对称轴。
2、使学生能根据对轴对称图形的初步认识,在一组实物图案或简单平面图形中正确识别轴对称图形;能用一些方法“做”出一些简单的轴对称图形。
3、使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
【教学重点】
理解轴对称图形的特征。
【教学难点】
掌握判别轴对称图形的方法。
【教学准备】:
多媒体课件、剪刀、彩色笔两支、彩色纸。
学生预习:
1、预习书本56-61页,在看书的过程中,把你认为主要的画出来,并反复读一读,想一想是什么意思?
2、在看书的过程中,如有不认识的图形,请上网查一查或向他人询问,知道它的名称,并写在图下
3、生活中哪些物体也具有对称的性质,请你写在横线上。
4、剪下书本第115页的天安门城楼图、飞机图和奖杯图,并对折,把你的发现写下来。
5、搜集一些轴对称的图形,打印出来,并能作简单的说明。
6、搜集一些著名建筑的图片,打印出来。
【教学过程】
一、引入新课
1、今天老师带来了几个物体,我们一起来看看!(出示:天安门、飞机、奖杯)
问:请同学们仔细观察,这些物体的外形都有什么特点? (对折后两边相同、对称、都是轴对称图形)
预设1:左右两边相同。像这样两边大小、形状完全相同的物体,我们可以说是对称的。那怎么来验证呢?(对折)
这些物体都是立体图形,我们不方便直接对折。不过我们可以把它们画下来,得到一些平面图形。现在可以对折了吗?
预设2:轴对称图形(对称)。那你说说你对轴对称图形(对称)的了解?
1、你是怎么理解对称的?怎么验证?(对折)这些对称的物体都是立体图形,我们可以把它画下来,得到一些平面图形。看,现在这些图形还对称吗?(对称)板书:图形
是不是所有的图形都是对称的?它们又是怎么对称的?我们又怎么来证明?今天这节课,我们就一起来研究一下。
2、你怎么理解轴对称图形?(学生的回答可能很零碎)
好,那接下来我们就一起来验证一下!
二、教学例题
1、课前让大家剪下了这三个图形并对折了,现在能把你的发现和大
家说一说吗?
生交流。(两边是一样的、左右两边大小一样、对称、有一条线、折横、对称线等)
(1)两边的大小一样、对称、完全重合。
问:你是怎么折的?比如说这个天安门图(左右对折)飞机图?(上下对折)
有没有不同的折法?那我可不可以这么折?为什么?(不能完全重合、两边不一样大小)也就是说,轴对称图形对折后两边要——完全重合。
(2)对折后是以前的一半。问:为什么只能看到一半?(两边都重合了)
(3)它们都是轴对称图形。那你是怎么判断的?都是这么折的吗?有没有不同的折
法?我这样折可以吗?为什么?
(4)折横、有一条线。若学生说不到,师可这样引导:我们再来看这几个图形,对折后都留下了什么?(一条线——这条线我们叫折痕)那这条折痕所在的直线我们叫——对称轴。对称轴用点划线来表示。画时,先画线,再画点,点和线间隔画。我们可以竖着画,也可以横着画。(黑板上演示)
那你能尝试找出其中一个图形的对称轴并用彩色水笔画一画吗?开始。
生在对折的纸上找一找并画一画。
反馈。画得正确吗?下面画对的同学请举手!真棒!
下面,老师要看看我们同学有没有掌握了。出示图——汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽章图。(想2)
你能判断出下面哪些是轴对称图形吗?
交流反馈:这个是轴对称图形吗?为什么?
这个呢?
重点讲解:香港区徽章图。外面完全重合了,里面的图案没有完全重合,所以——不是轴对称图形。
2、教学试一试
轴对称图形其实对我们来说并不陌生,在我们学过的平面图形中也有一些。
出示:你能判断哪几个图形是轴对称图形吗?
交流反馈:哪些是轴对称图形?为什么?(对折后能完全重合)怎么对折的?(上下、左右)有几种折法?(2种)
正方形、长方形:怎么对折的?还有别的折法吗?(还能怎么折?) 师:不管怎么折,只要对折一次后图形能完全重合的,都是轴对称图形。
正五边形是吗?为什么?
着重提出:平行四边形为什么不是?
生拿出平行四边形折一折,小组讨论后,指名说理由。
问:你的想法是怎样的?谁愿意来折一折?