为了在接下来的教学工作中有更大的突破,我们一定要好好制定教案,教案是老师为了更有力把握知识点预先撰写的应用文种,下面是范文社小编为您分享的二年级下册轴对称图形教案6篇,感谢您的参阅。
二年级下册轴对称图形教案篇1
教学目标:
1、在游戏比赛中凸现轴对称图形的基本特征,并通过观察、动手操作知道沿着一条直线对折,直线两边完全重合的图形叫轴对称图形。
2、通过判断、验证、比较进一步加深对轴对称图形的认识和理解,并认识对称轴,根据特征会找和画一个轴对称图形的对称轴。
3、在判断、验证、比较中培养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念。在交流、合作中学生学会从多种角度思考问题,培养思维的灵活性。
教学重点:
通过观察、动手操作,初步认识轴对称图形。
教学难点:
会找并且会画轴对称图形的对称轴。
学科素养:
养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念
学会从多种角度思考问题,培养思维的灵活性。
教学过程:
一、比赛引入,聚焦轴对称图形的基本特征。
师:今天上课我们先做个游戏,比一比女同学和男同学谁的眼力最好,老师分别给你们看图形的一部分,你们马上猜出这个图形是什么?准备好了么?
(出示多媒体):
女生::蝴蝶。
师:女生,你们都同意么?(出示)
反馈:很好(竖起大拇指)。
出示:
男生1:木棍。男生2:铲子。男生:……
出示:
反馈(淡淡地宣布):第一局男生输了。
出示第二轮题:
女生异口同声:飞机。
随即媒体出示:
反馈:真厉害。
问:现在轮到男同学了,媒体出示——
男生3:盆子。男生4:帽子。男生:……
媒体出示:
反馈:第二轮男生又输了,再看最后一轮。
出示:
女生兴奋地叫起来:剪刀!
随即出示并赞扬道:女生的眼力真厉害,男生看你们的了。
出示:
男生5:书。
男生6:乒乓板。
男生:……
出示:并同情地说道:哎!可惜,又错了。
生:老师,这不公平,女生猜得简单。
教师回头一看银幕:你们猜得也很容易的呀!
生:不是的,女生猜的图形两边一模一样的。
(分别指着不同图形让同学们用语言说一下上下还是左右两边一模一样)
评价:你不仅会观察图形中的特征,还能用简洁的语言叙述出来,一句话就让大家都听明白了,真厉害!
师:老师画一条直线(教师在媒体的蝴蝶上画了一条对称轴,)你们说的是不是这条直线的两边一模一样。
追问:那么飞机和剪刀的这条直线在哪里?(学生用手比划)男生猜的图形有没有这条直线?
?设计说明:由于比赛内容的不公平,必然导致比赛结果的不公平,从而激发每个学生在为不公平比赛申诉中发现图形的特征,即直线的两边完全重合,直接突出知识点】
二、缓和矛盾,揭示概念
问:这样看来不是我们男同学的眼力差,而是女同学猜的图形很特殊。那么男同学,如果老师也给你们这样的图形,你们能一下子猜出来吗?
银幕出示:半个兔子头
男生:兔子
追问:老师把图打印了出来,你们刚刚说女生的团都有一条直线,兔子的直线在哪里?(指一指)
追问:你们刚刚又说直线两边的图案是?
操作:那么我想请一个同学用最简单的方法证明直线两边的图形完全一样?(停顿,给同学们思考后)不过我提个要求,要求边验证边说出验证过程。
生:边操作边说,把“兔子头”对折,直线两边一模一样。
(在学生折前:你是不是随便折,那你怎么折?在学生折的过程中:教师抓住“对折”要沿着一条直线对折、“一模一样”数学中叫“完全重合”,引导“沿着一条直线对折,直线两边完全重合”。(板书)
师:像这样沿着一条直线对折后,直线两边完全重合的图形叫什么图形?(板书:轴对称图形,并标注拼音zhóu)
全班朗读课题。
?设计说明:通过比赛,直接抓住图形的主要特征,激发学生探究的欲望,学生在动手操作验证中揭示轴对称图形的概念,自然流畅。】
三、在判断、辨析中进一步理解轴对称图形
师:同学们现在如果给你一个图形,你能判断它是不是轴对称图形吗?
出示图1:
生:手势判断(是轴对称图形),一位学生上台演示证明(先指一指直线,再折,引导学生用规范的数学语言叙述概念)
出示图2:
生:手势判断(一小部分学生认为是的)
师:请认为是轴对称图形的同学上来验证给大家看。
反馈:生活中有一些图形看看是的,很有迷惑性,但实际上却不是的。
出示图3:飞机和
生:手势判断(是轴对称图形),一位学生上台演示证明,下面的学生一起说:沿着一条直线对折后,直线两边完全重合,所以是轴对称图形。)
?设计说明:在正与反的判断辨析中进一步明确沿着一条直线对折,直线两边完全重合的图形是轴对称图形】
出示图4:
生:手势判断(一部分学生认为是的)
师:这一次请大家在脑中“折一折”验证一下,验证后可以改变注意。
一会儿,仅剩下少数学生坚持说“是的”,教师请其中的一位学生动手验证,结果发现不完全重合。
反馈:最开始的时候很多同学一会儿说是,一会儿说不是,但是后面老师说了句什么话,脑中折一下,很多人改变了主意是怎么回事?
生:老师,如果这双鞋背靠背,或者头对头就是轴对称图形了。(准备实物再对折)
师出示图5:
生:手势判断(大部分学生认为不是的)
生1:如果两条鱼嘴对嘴或尾对尾就是了,并上台演示对折,不完全重合。
生2:我认为是的,这样折不行,这样折就行了,生演示
评价:对呀,说的真好,很会动脑筋,思维非常灵活,当发现这样折不行,可以换个角度折,只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。
?设计说明:在判断完图3时,部分学生有可能还停留在直线两边“一模一样”,而对对折后完全重合理解还不够透彻,通过图4的判断,让学生在脑中“折”(发展学生空间想象能力)到引导学生动手验证,在辨析中进一步加深对轴对称图形特征的认识,图5由于图4的负迁移,会产生争议,组织学生辨析,明确只要找到一条直线,直线两边完全重合的图形就是轴对称图形。同时又打破了学生的思维定势,更活跃了学生的思维。】
四、认识对称轴
师:刚刚同学们都说了轴对称图形都能沿着一条直线对折的,直线两边完全重合。(教师用手指出并画对称轴,如图像这样的一条直线我们称它“对称轴”)
(上台画爱心,如果画的不一样)
反馈:观察生1画的和老师有什么不一样?
师:一般在数学上,画对称轴用直线,两边都要出头。
追问:还有同学想画么,老师最后请一位同学上来画(画一个不是轴对称图形的溜冰鞋)
反馈:你看看,同学们有不同意见了。让你画对称轴,只有轴对称图形才有,不是轴对称图形没有对称轴,老师和你开个玩笑的。
全体学生练习画轴对称图形的对称轴。反馈略(书p:54/3)
五、认识几何图形中的轴对称图形并能找到对称轴。
师:接下去,同桌合作在信封内的几何图形中挑出轴对称图形。
(图1)(图2)(图3)(图4)(图5)(图6)
生1:图3、图4、图6是轴对称图形。
生2:图2也是轴对称图形。
生3:我折过的,图2不是轴对称图形。
师:看样子,其他图形没意见,分歧在图2。请生3演示证明给大家看为什么它不是轴对称图形。
生3:演示证明
生2:这样折不行的,应该这样折,生2迫不及待上前演示证明:
师:对呀!只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。
师:接下去请找出轴对称图形的对称轴,看谁找得最多!
反馈:图2有一条对称轴。图4有两条对称轴。图3有4条对称轴。
讨论圆的对称轴。
生1:圆有四条对称轴。并用自己的学具指给大家看他所折的折痕。
生2:还有也,这位学生用自己的学具又折出两条。
生3:有很多很多条,这位学生也用自己的学具演示给大家看。
师:由于学具比较小大家看不清楚,老师请电脑演示给大家看。(多媒体演示)
数也数不清的条数,数学上叫无数条。
师:刚才我们学习了数学中的轴对称图形,你能在生活中找到轴对称图形吗?
生1:黑板是轴对称图形。
生2:窗子是轴对称图形。
生3:红领巾是轴对称图形。
生4:大众出租车的牌子。
生……(教师规范成平面图形)
师:老师也找了一些。(媒体出示生活中的轴对称图形有脸谱、剪纸……,渗透民族文化教育)
小结:
你今天有什么收获?
作业:
师:今天的回家作业就是利用课上所学的知识,剪一个轴对称图形,并向大家介绍你的巧方法。
?设计说明:由于课堂上的时间是有限的,怎样让课堂教学得于在课外有趣的延伸,剪一个轴对称图形,既体现了对轴对称图形进一步理解和运用,又有动手的乐趣,一举两得。】
板书设计
轴对称图形
轴对称图形
沿着一条直线对折,直线两边能够完全重合,这样的图形就叫做轴对称图形
二年级下册轴对称图形教案篇2
教学目标:
1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习的过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增强学习数学的兴趣。
教学重难点:
让学生通过折纸等方法确定轴对称图形的对称轴,会画出简单轴对称图形的对称轴。
教学准备:
教师:多媒体教学课件,白纸、长方形纸、正方形纸各一张,梯形和三角形。
学生:白纸、长方形纸、正方形纸各一张。
教学对象的分析:
这部分内容主要通过折纸等方法确定轴对称图形的对称轴,进一步体会轴对称的特征。学生在前面已经的学习中,已经知道了一个图形对折,折痕两边完全重合的图形是轴对称图形,并且认识了对称轴。所以针对这一具体内容,课的一开始就通过撕纸玩轴对称图形,学生对这一内容非常感兴趣。
教学过程:
一、“玩”对称,谈话激趣
谈话:如果给你一张纸,你打算怎么玩这张纸?……你想不想知道老师是怎么玩这张纸?看好了,先对折,对折后有一条折痕(板书:折痕),然后从折痕处撕开。怎么样,想试一试吗?(把教师的作品贴在黑板上)
二、自主探究轴对称图形的对称轴。
1、仔细观察你的作品,它是一个什么图形?(我的图形是轴对称图形)(有一条线,有一条折痕,两边完全一样,完全重合)板书:轴对称图形
提问:为什么你觉得你的图形是轴对称图形呢?(对折后两边能完全重合的图形叫做轴对称图形)
2、谈话:轴对称图形中间都有一条(折痕),而折痕所在的直线就是这个图形的对称轴,(板书:折痕所在的直线叫对称轴)。
提问:折痕所在的直线叫对称轴,那说明对称轴是一条什么?(直线)直线有什么特征?(无限延长)那么对称轴怎么画呢?
谈话:画对称轴的时候我们一般用点划线来表示。(板书:点划线)也就是先画一点再画一横,由于对称轴是一条直线,并且是无限延长的,所以我们要把这条点划线分别向上向下延长。
3、你能像老师这样在你的作品上画出对称轴吗?画好了吗?画好后同座位之间相互看看。
4、没想到吧,就这么一张白纸,简单的一折,一撕,居然创造出了数学上的轴对称图形。其实轴对称图形离咱们并不遥远。
5、教学找长方形的对称轴
1) 这是一张长方形的纸,如果让你找出这个长方形纸的所有对称轴,你准备怎么办?(对折)你赞同吗?那咱们就动手折一折并画出它的对称轴吧。
2)指名到讲台前展示自己的折法和画法。
3)通过对折,我们发现了长方形只有几条对称轴?(两条)
4)刚才我们用折纸的方法找到了长方形纸的两条对称轴,(出示黑板上画好的一个长方形),这儿也有一个长方形,画在黑板上的长方形还能对折吗?如果要你画出它的对称轴,你有还方法吗?小组内讨论讨论。指名说一说。
(先量出长方形对边的中点再连线)提问:你是怎么找到对边中点的?(量一量)谈话:我告诉你这个长方形的长是30厘米,怎么找这条边的中点?15厘米处。这条边的中点跟上面的一样。然后把两个中点用点划线连起来。
提问:对称轴找完了吗?请你继续用这种方法找完长方形其他的对称轴。
5)让学生在书上画一画。画好后提醒学生:画好的同学把老师刚刚画的这条对称轴也画上去。
提问:你一共画了几条对称轴?
由此可见,不管是长方形纸还是长方形的图,它都只有两条对称轴。
6、教学正方形的对称轴
1)研究了长方形,你觉得我们下面要研究什么图形了?(教师拿出正方形的纸)拿出正方形纸,请你用刚才研究长方形的方法,找到正方形所有的对称轴并画出各条对称轴。
2)通过刚才的研究,你能画出几条对称轴?(四条)哪四条?斜的这条你是怎么找到的?你们和他找的一样吗?原来老师和你们找的也是一样的,演示课件,是这四条吗?
3)现在我们知道了正方形有几条对称轴?(正方形有四条对称轴)和长方形相比怎么样啦?(比长方形多)多几条?哪两条?(斜的两条)
三、巩固深化,拓展延伸。
完成想想做做1
1、通过刚才的活动,我们找到了长方形和正方形的对称轴,知道了长方形有2条对称轴,正方形有4条对称轴。出示书本62页想想做做第一题中的所有图形。这儿有很多我们学过的图形,看看哪些同学能一眼就找到其中的轴对称图形,你觉得它是轴对称图形的用铅笔在上面轻轻地打上一个勾。学生独立判断。
2、你判断好了吗?你觉得怎么去检验你的判断是对的还是错的?(折一折)拿出事先准备好的这些图形折一折,如果是轴对称图形的,请你在书上画出它的对称轴。
3、学生动手操作,教师巡视,集体反馈交流。
谈话:老师发现很多同学都已经有了自己的观点,现在机会只有六个,每个同学可以选择你最有把握的一个,说一说它是不是轴对称图形,如果是的,有几条?
4、谈话:通过刚才的活动,大家都能准确的判断这6个图形是不是轴对称图形,但是,吉老师觉得心里有话要说,不知道同学们心里有没有话要说。我特别想说的是,就以梯形为例吧,1号图是一个什么梯形?(等腰梯形)虽然这个等腰梯形是一个轴对称图形,但是……不是每个梯形都是轴对称图形,比如6号梯形还有我手里的这个梯形,他们都不是轴对称图形。看来一般的梯形不是轴对称图形,只有等腰梯形才是轴对称图形?好了,我的话说完了,剩下的图形你们来说吧。
完成想想做做2
1、我给大家又带来了一些美丽的图形。下面的图形都是轴对称图形吗?是轴对称图形的在下面画“√”。独立完成,指名回答,你来说一说哪些图形是轴对称图形。
2、出示第一个图形。这个图形有几条对称轴呢?四人一组讨论。指名回答,那你能把它画出来吗?和老师画的一样吗?其他的两个图你能找到他们的对称轴吗?
3、学生独立完成第二、第三个图形。集体交流。
4、第二个图你找到了几条对称轴?第三个呢?
完成想想做做第4题。
1、出示前3个图形,先仔细观察题中的三个图分别是什么图形?如果学生说第一个图形是三角形,要追问是什么样的三角形,(等边三角形又叫正三边形)如果学生说第三个图形是五边形,谈话:这个图形不是普通的五边形,它的5条边相等,它是正五边形,2、这3个图形各有几条对称轴呢?你能在书上画一画吗?学生在书上画一画。
3、反馈:正三边形有几条对称轴呢?有没有不同意见的?是这样吗?那正四边形呢?对吗?正五边形呢?
4、教师手指着黑板,正三边形有3条对称轴,正四边形有4条对称轴,正五边形有五条对称轴。你发现了什么?(正几边形就有几条对称轴)
5、根据这个结论,你能知道第四个图形正六边形有几条对称轴吗?我们一起来看看是不是六条。正八边形呢?
四、课堂总结
今天这一节课,我们主要学习了轴对称图形。其实,大自然对于轴对称的创造远远不止这些。仰望蓝天,俯瞰大地,拥有生命的地方何处没有轴对称的足迹。看那花丛中飞舞的蝴蝶和蜻蜓,那翱翔天际的大雁和白鸽。就让我们在幽雅的音乐声中做一回小小设计师,设计一个轴对称图形。完成书本63页想想做做第5题。
教学反思:
学生在一年前已经学习过了轴对称图形,有的学生可能已经遗忘。所以课的一开始,设计了教学复习,可以引导学生对已有知识的回忆,调动其已有的知识储备,特别是教师画对称轴的画法为学生画对称轴做了示范。这节课重点研究对称轴的画法,使学生明确了学习目标,以集中学生的注意力。
在新授的内容中,首先让学生通过折纸发现长方形有两条对称轴,然后以小组合作的形式研究怎样画长方形的对称轴。这样的程序可以引导学生由易到难,由直观到抽象进行思考。教师对可能出现的情况作了预测,以便在不同情况下实现难点的突破。教师的示范作图和必要的讲解使学生对对称轴有了更加深刻的认识。
在教学试一试中,先放手让学生尝试折纸和作图。这样做是必要的,也是可能的。在评议时关注后进生的认知状况,启发他们通过操作提高认知水平。
在练习的这个环节中,练习的操作程序清楚,而且题目讲解到位。
当然在教学过程中,教师有很多学具准备的不够充分,比如为学生准备的长方形纸和正方形纸太小,以致于在教学反馈时,坐在下面的学生根本看不到上面学生展示的作品,其实教师这时可以使用事物投影来展示学生的作品。并且多让学生说说自己的想法。
在整个教学过程中,课堂的气氛非常的沉闷,没有平时的课堂氛围好,经教研员分析是教师对学生的正面的,积极的评价太少,导致学生的回答问题的积极性不高。在上完课之后,我努力尝试了积极评价学生的回答,果然有不同反响。看来年轻教师在平时的教学活动中要多多向有经验的教师学习,平时多上一些教研课,这样才能提高自己的课堂教学能力。
二年级下册轴对称图形教案篇3
教材内容
人教版义务教育课程标准实验教科书二年级上册p68。
教材、学生分析
对称是大自然的结构模式之一,它广泛存在于我们的日常生活中,存在于人类创建的文明史中,具有多种变换形式。学生对于对称现象并不很陌生,例如,许多艺术作品、建筑设计中都体现了对称的风格。教材借助于生活中的实例和学生的操作,判断哪些物体是对称的,找出对称轴,并初步地、感性地了解轴对称图形的性质,但并不要求掌握“轴对称图形”的名称。
教学目标
1.了解生活中的对称现象,认识轴对称图形的一些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。
2.通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新等能力。
3.在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的对称美。
设计理念
1.改变学生的学习方式,以自主探索、合作交流、动手实践为主要学习方式,促进学生的自主学习。
2.充分尊重学生的生活经验和认知基础,引导学生联系实际,感悟“生活数学”理念。
3.将数学欣赏融入教学中,感受数学美。
教学重点
认识轴对称图形的基本特征。
教学难点
设计制作轴对称图形。
设计流程
一、理解感知“对称”
1.首次探底:今天这节课我们要来研究图形王国中的一种现象──“对称”。你听说过对称吗?说说你印象中的对称。
2.再次探底:出示组图(蝴蝶、狮子脸、椰树、枫叶),这些图形你觉得哪些是对称的?跟同桌说说为什么。
3.交流反馈:你是怎样想的,说说你的理由?(预设①:多数学生能判断正确──你们是怎么看出来的?;预设②:少数学生能判断正确──展开生生交流,可分成正反两方争辩,陈述理由)
4.引出验证:你能想个办法来证明蝴蝶、狮子脸、枫叶的两边一样,只有椰树的两边不一样吗?(预设:学生代表上台分别折一折蝴蝶、狮子脸、椰树、枫叶)
5.师小结:像这样对折后两边完全重合在一起的图形,就叫做对称图形。(板书)刚才同学们把图形对折后留下的这条折痕,我们把它叫做这个对称图形的对称轴。(在黑板上用点划线范画对称轴)你能找出剩下图形的对称轴吗?你觉得对称轴有什么特点?
6.即时生成资源并共享:在教室里找找有没有对称图形,指指它们的对称轴。全班互动交流评价。
7.欣赏生活中的这些物体的形状,指指它们的对称轴在哪里。
(意图:教学伊始,开门见山地结合课题进行探底,把握学生认知起点,以四幅色彩鲜艳的图片为纽带,唤醒学生的生活经验,再以“动手折一折”为依托,引出对称图形及对称轴的概念,并及时拓展到生活中去寻觅与欣赏,以学生现场找到的对称图形为资源,利用这些生成资源进行对称概念和对称轴概念的巩固。在这样的数学教学中,学生真切地感受到了数学资源和数学实践无处不在。细想之下,整个教学过程不就是一个从“生活经验”提升到“数学原型”的过程吗?而这样的过程又是在师生民主平等的对话和学生多样化活动中进行的。)
二、实践深化“对称”
1.讨论:刚才我们找出了很多对称图形,也欣赏了很多对称图形,老师也想来动手制作一个对称图形,你觉得我可以制作一个什么图形?……
2.探究方法:师从学生回答中采纳一条意见,“大家能指挥老师做一做吗?”……(预设①:多数同学会──集体指挥教师后请学生小结方法;预设②:个别同学会──请同学上来演示,师生共同小结方法。)
3.你想自己动手试一试吗?学生个体独立活动,看在相同的时间内,谁制作的对称图形最有创意、最漂亮。
4.展示生成资源:把你的作品先露一半让大家想想可能是什么图形?再全部展开贴在黑板上,指指它们的对称轴(生生互动交流、评价)。
(意图:在这一教学环节中,主要借助给老师出主意、动手做一做、互动评评议议的教学策略,让学生带着知识走进实践,不着痕迹地得出了制作对称图形的方法,主张通过实践使学生学会运用知识,发展思维。这里将教学的重点圈定于学生自主探求制作方法、创造对称图形之中,并对这些生成资源加以利用,感悟数学的应用性和数学美。)
三、练习内化“对称”。
1.出示常见图案。判断,如果是对称图形的,画出对称轴。(独立完成,反馈)
2.出示长方形、正方形、圆形,折出对称轴(动手之前先进行猜想:你觉得他们可能有几条对称轴?动手实践验证)。
(意图:这里主要借助于画一画的方法实现数学知识的内化和提升。如此,不但培养了学生实践应用的意识,而且有助于“猜测、验证”及感受“无限”的数学思想方法的渗透。)
四、总结延伸:
1.通过今天的学习,你学会了什么?你觉得学了对称图形后有什么用处呢?其实,对称还有很多种类型,以后我们将继续去学习。
2.数学百花园:欣赏中国的剪纸艺术和世界各地的建筑艺术,进一步感受对称美。
(意图:课已接近尾声,这里的两个环节目的在于梳理数学知识、升华数学知识,催生学生对生活中对称艺术的赞美,实现从轴对称图形──生活中其它对称现象的跨越,学生在背景音乐的渲染下,又一次经历了灿烂文化的熏陶。)
二年级下册轴对称图形教案篇4
教学目标:
1、使学生初步认识生活中得对称现象,认识轴对称图形和对称轴;知道轴对称图形得含义,能判断一个图形是否是轴对称图形。
2、会根据轴对称图形得特点,找出相应得对称轴。
3、让学生体会理论来源于实践,又在实践中广泛运用这一道理。
4、培养学生得观察能力和动手操作能力。
教学重点:
掌握轴对称图形得特点,能判断一个图形是否是轴对称图形。
教学难点:
会找出轴对称图形得对称轴。
教学准备:
多媒体课件,剪纸
学具准备:
长方形纸一张、剪刀、
教学过程:
一、情景欣赏:
师:同学们,老师今天给大家带来了一些得图片,请大家欣赏,在欣赏得同时观察这些图片有什么特点。
1、屏幕出现图片
(1)自然景观图片
师:这景色美吗?
生:美
师:大自然得景色很美,而且还很有特点,聪明得设计师和能工巧匠利用大自然得特点设计和建造了一些美丽得建筑。
(2)轴对称建筑图片
师:你看到得图形有什么特点?
生:有,有得左右一样,有得上下一样。两边一样…
师:我们得生活中经常也可以看到具有这种特点得物体和图形。
(3)生活中得轴对称图片
师:剪纸是我国得民间艺术,历史悠久,流传广泛,它最能体现这种特点。
(4)剪纸图片
2、对图形进行概括:
师:你们所看到得这些图形都有什么特点?
生:有得左右一样,有得上下一样。两边一样,有一种对称美。
师:上面这些图形给我们一种对称美,这些图形都是轴对称图形。(板书课题:轴对称图形)轴对称这种特点在我们日常生活中,应用很广泛,到底什么样得图形是轴对称图形呢?这就是我们今天要研究得问题。
二、动手操作发现新知:
1、师:我们来做个实验,先看大屏幕老师怎么做
(演示课件。折纸------画图-----剪纸-----打开)
师:现在请大家拿出你手中得长方形纸和剪刀,向老师这样也剪出一个简单得图形。
2、学生操作(教师巡视指导)
师:通过剪纸,你发现了什么?
生:我发现了我这个图形得两边一样,中间还有一条折痕,
师:那你知道它是什么图形吗?
生:轴对称图形。
师:能用你得话说一说什么是轴对称图形?
3、揭示特征。
师:老师给大家再演示一下
演示课件,概括轴对称图形得概念。
如果一个图形沿着一条直线对折,两侧得图形能够完全重合,这个图形就是轴对称图形。折痕所在得这条直线叫做对称轴
4、举例:
师:你能说一说生活中你见过哪些轴对称图形?
生:举例,师点评
师:同学们对什么是轴对称图形理解得非常好,现在我们在来研究一下我们学过得一些图形,看他们是不是轴对称图形。
三.合作研讨探究(轴对称图形得探索与提高)(四人小组)
1、把下面得图形剪下来折一折,看一看那些是轴对称图形?并画出他们得对称轴。
2、结论:课件演示
通过刚才剪一剪,折一折,画一画,你们又发现了什么?
师:通过合作研究,我们知道了这些图形中有得是轴对称图形,有得不是;有得轴对称图形只有一条对称轴,有得有两条,三条,四条,还有得有无数条对称轴。
四。巩固练习。
1、考考你得眼力
(1)下面得图形那些是轴对称图形?找出它们得对称轴。
师:不光这些几何图形是轴对称图形,我们学过得字母、数字、汉字有些也是轴对称图形。
(2)下面得字母。数字,汉字那些是轴对称图形?它们各有几条对称轴?
acdeftghu
123456789
王上田大中日人朋两
2、.填一填
(1)、如果一个图形沿着()对折,两侧得图形能够()这个图形就是轴对称图形。折痕所在得这条直线叫做()。
(2)、圆是()图形,在同一圆里任何一条()都是圆得对称轴。
(3)、等边三角形有()条对称轴
3.判断
(1)扇形也是轴对称图形,它和圆一样也有无数条对称轴。()
(2)平行四边形可分成两个完全一样得三角形,所以,平行四边形也有两条对称轴。()
(3)圆上任意两点间得线段都是圆得对称轴。()
(4)有两条对称轴得图形只有长方形。()
5.画出下面每组图形得对称轴.各能画几条?
五.课堂小结:
1、通过这节课得学习你有什么收获?
2、结束语:
师:对称是一种美,是数学美在生活中得具体体现,希望大家能运用今天所学知识把我们生活装扮得更美丽、更精彩。谢谢同学们得合作,再见。
二年级下册轴对称图形教案篇5
教学内容:
轴对称图形
教学目标:
1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
教学重点:
认识对称现象和轴对称图形的特点。
教学难点:
掌握识别轴对称图形的方法。
教具准备:
多媒体课件、实物图片等。
教学过程:
一、谈话引入,激发兴趣
1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出对称
二、合作探究,学习新知
1、观察图形,认识对称
(1)观察几幅对称图形,引导学生感悟对称。
(2)说一说生活中的对称现象
2、动手操作,认识轴对称图形
(1)猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
(2)动手操作,剪出轴对称图形
师示范剪一件上衣的过程:折一折、画一画、剪一剪。
生动手剪出自己喜欢的轴对称图形。
交流展示学生的作品
(3)认识对称轴
看一看,摸一摸,说一说
画一画:师示范画出对称轴,然后学生自己画,再交流。
3、初步理解轴对称图形
(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
(3)举一举身边的轴对称图形的例子。
三、巩固练习,拓展延伸
1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
四、课堂总结
通过这节课的学习,你有什么收获?
五、欣赏轴对称图形的美丽
二年级下册轴对称图形教案篇6
教学内容:
教材28-29页例1及做一做,练习七1-3题
教学目标:
1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。
2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。
教学重点:
认识轴对称图形的基本特征。
教学难点:
能判断出轴对称图形。
教学教法:
观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。
教学过程:
一、欣赏图片,建立表象
出示教材第28页单元主题图。
谈话:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍下这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。)
小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。
二、互动新授
1、小组合作,探究对称。
教师点击蜻蜓风筝和蝴蝶风筝的图形。
谈话:你看,这是在游乐场上的蝴蝶风筝和蜻蜓风筝,认真观察,它们在形状上有什么特征?(让学生用自己的语言说。)
教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为对称,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。)
师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。
学生自主交流。
谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)
2、教学对称
师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为对称,这些物体就是对称现象。