圆柱教学设计8篇

时间:2023-01-08 作者:betray 教学计划

想必很多人在写教学设计的时候都会将自己的教学策略表达清楚,大家在写教学设计的时候一定要结合自己的教学经验哦,下面是范文社小编为您分享的圆柱教学设计8篇,感谢您的参阅。

圆柱教学设计8篇

圆柱教学设计篇1

一、引入新课

昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?

生:圆柱是由平面和曲面围成的立体图形。

生:我还知道圆柱各部分的名称……

生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

演示这一过程

师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)

师:你还想知道什么呢?

生:还想知道怎么求它的表面积......

师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)

二、探究新知

师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?

指名学生摸其表面积,并追问:怎样求它的表面积?

生:六个面的面积和就是它的表面积

师:怎样求圆柱的表面积呢?(学生分组讨论)

学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)

1、圆柱的侧面积

师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)

小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

展示其变化过程。

师生小结:(教师板书)侧面积=底面周长×高

呈现例一:一个圆柱,底面直径是0.4米,高是1.8米,求它的侧面积。

(1)学生独立解答

(2)指明学生解答,并让其讲清自己的解题思路。

师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

生:底面周长和高

师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

2、圆柱的表面积

师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)

教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)

指名学生说解题思路,

师:这说明要计算圆柱的表面积需要抓出哪两个量?

生:底面积和侧面积

师生小结:圆柱的表面积=底面积×2﹢侧面积

3、反馈练习:(略)

师:想一想,应该先求什么?再求什么?请大家动手试一试。

4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)

三、全课小结:这节课你有什么收获?

你有没有想提醒同学们注意的地方?

生:要注意单位,还要注意所要求得圆柱有几个底面……

四、自我评价

你认为自己这节课的表现如何?

圆柱教学设计篇2

教学内容:

青教版九年义务教育六年制小学数学六年级下册第23—28页。

教材简析:

该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。

教学目标:

1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。

2、经历探索圆柱计算公式的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

教学重点和难点:

圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。

教具准备:

多媒体课件、圆柱体积学具、沙子等。

第一课时

教学过程:

一、创设情境,激趣引入。

谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)

课件出示:两个圆柱体冰淇淋。

谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?

(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)

设计意图:

从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。

二、回忆旧知,实现迁移。

谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?

(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

设计意图:

通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。

三、利用素材,探索新知。

??交流猜测

谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?

生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?

师谈话:你的想法很好,怎样转化呢?

生讨论,交流。

生汇报,可能会有以下几种想法:

1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。

2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。

3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。

谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。

??实验验证

学生动手进行实验。

谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

学生合作操作,集体研究、讨论、记录。

设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。

四、分析关系,总结公式

1、全班交流

谈话:哪个小组愿意展示一下你们小组的研究结果?

引导学生发现:

转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。

2、分析关系

引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

3、总结公式。

谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。

(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)

谈话:你发现了什么?

引导观察:分的份数越多,拼成的图形就越接近长方体。

(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)

谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。

根据学生的回答教师板书:

长方体的体积 = 底面积 × 高

圆柱的体积 = 底面积 × 高

谈话:你能用字母表示圆柱的体积计算公式吗?v=sh

设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。

五、利用公式,解决问题。

自主练习第1题、第2题、第3题

设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。

六、课堂总结

圆柱教学设计篇3

教案背景:

冀教20xx课标版小学数学六年级下册第四单元

教学课题:

圆柱的侧面积。

教材分析:

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

教学目标:

1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

教学重点:圆柱侧面积的计算。

教学难点:圆柱体侧面积计算方法的推导。

教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

教具准备:圆柱体教具、多媒体课件。

学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:

一、复习导入,引入新知

1、复习圆柱体的特征

师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

二、课堂小结

1、本节课你有何收获?

2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

三、课后作业

应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计

圆柱的侧面积 =底面周长 ×高→s侧=ch

长方形面积=长×宽

教学反思

这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

一、数学教学要注重数学思想和数学方法的渗透。

在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

二、重视学生的合作意识和实践能力的培养。

在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

三、合理利用现代化教学手段辅助教学。

侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

圆柱教学设计篇4

预设目标:

1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。

2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质。

教学重、难点:

1、理解和掌握圆柱体的侧面积和表面积的计算方法。

2、培养学生科学的学习态度。

教学过程:

一、检查复习,引入新课。

1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。

3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

板书:圆柱的表面积

二、引导探究,学习新知。

1、侧面积的意义和计算方法。

⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。

⑵想一想用我们已有的知识,能不能求出这个曲面的面积。(你能求出这个曲面的面积吗?)

小组讨论:有什么好办法求出圆柱的侧积吗?

⑶剪一剪自制圆柱,汇报交流结果。

⑷说一说:圆柱体的侧面可转化为已学过的平面图形是什么?

它的侧面积正好等于底面周长乘高的乘积。

板书:圆柱的侧面积=底面周长×高

⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。

小结:计算圆柱体的侧面积的方法是什么?

⑹做一做:

课本76页例1及77页的第一题。

2、表面积的意义及计算方法

⑴自读课本:什么是圆柱的表面积?

板书:圆柱的表面积=侧面积+2个底面积

⑵练一练:(小黑板出示)

⑶小结:

圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。

三、巩固练习,灵活运用

1、自学课本,书77页例3。

⑴分小组讨论;

⑵学生反馈。

2、问:要知道圆柱形的物体的侧面积,要求哪些面的总面积?

3、只列式不计算。

小黑板出示题目。

4、实践练习

⑴小组合作:测量并计算自制圆柱形实物的侧面积。

⑵讨论:要求出圆柱形的物体的侧面积,是求哪些面的总面积?需要知道哪些数据?怎样能测量这些数据?

⑶测量:测量所需的数据。

⑷计算:根据量得的数据。列出相应的算式并算出结果。

四、课堂小结:

说一说你今天学会了什么知识?

圆柱教学设计篇5

?圆柱的表面积》教学设计

教学目标

1、认识圆柱的表面积,理解圆柱表面积的含义.

2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.

3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.

重点:认识圆柱的表面积,理解圆柱表面积的含义.

难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:

1、圆柱体教具一个

2、学生每人准备圆柱形模型两个;剪刀; 教学过程:

一、复习引入

1、看老师今天带来了个什么?它是个什么样的立体图形?为什么你认为它是圆柱呢,他与圆柱又什么共同的特征呢?(有两个相同的圆,有一个侧面。。)

2、哪现在老师想请一个同学来摸一摸你能摸到几个面?

3、其实刚才同学们所摸到的面,它的面积就是我们圆柱的表面积也就是我们今天要学习的内容(板书:圆柱的表面积)

二、新课教学

一、侧面积的推导:

首先请同学们读一读这节课的学习目标

(一)出示学习目标:

1、理解圆柱的侧面积和表面积的含义。

2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。

3、能灵活运用求表面积,侧面积的有关知识解决一些生活中的实际问题。

师:要求表面积,从我们观察的羽毛球桶来说求的是桶的表面积指的是什么呢?(一个侧面和两个底面面积之和)板书:圆柱的表面积=侧面面积+2个底面面积

师:哪两个底面面积是两个什么的面积啊?(两个圆的面积)

哪可是圆柱的侧面是一个什么面?(曲面)我们学过平面图形的面积哪曲面图形的面积怎么计算呢?我们可以把它转化为平面图形来计算吗?

师:把圆柱的侧面展开会是一个什么样的图形呢?这个问题由同学们待会再小组讨论中得出结论.现在每组都有一个圆柱那你们把它剪开,把侧面剪开后你有什么发现,并带着这两个问题进行讨论。小组讨论:

1.圆柱的侧面展开是什么形状

2.展开图中的长与圆柱的底面的周长又什么关系,宽与圆柱的高有什么关系呢?

为了清楚看到他们展开后是什么形状,我们一起来看大屏幕的演示。侧面展开后是个什么形?那么它展开后与圆柱的各部分又什么关系呢?大家接着看。(长刚好是圆柱底面周长 宽刚好是圆柱的高)那么圆柱的侧面积你知道应该怎么计算了吗?(板书:长方形的面积= 长 × 宽

↓ ↓ ↓ 圆柱的侧面积=底面的周长×高)

这个方法是同学们通过自己的努力,将一个曲面转化成平面图形而推导出来的,请同学们用洪亮的声音表扬自己读一读。

(二)圆柱的侧面积应用

师:那么老师想要将这个羽毛球桶贴上一圈商标纸呢应该是求这个圆柱的什么呢?(侧面积)那么侧面积怎么算呢?大家做到本子上 请同学展示

我们知道了什么求什么?底面周长是多少呢?

二、圆柱的表面积推导:

(一)圆柱表面积

师:那么刚才我们求的商标纸的面积是圆柱的表面积吗?(不是)哪要求圆柱的表面积还要怎么办?(加上两个底面的面积)也就是说我们要求圆柱的表面积就是要求圆柱那几部分的面积?

(一)圆柱表面积应用

师:如果老师要将这个羽毛球桶全部贴上包装呢,你认为求的是它的什么呢?(表面积)自己做下。展示(做对的举手)

哪么是不是生活中的所有的圆柱都是要求三个面的面积吗?我们来看下这道题。请同学们读一读题,读出关键词,问的是要求做这样一顶帽子要多少材料多少材料其实是求什么呢?有几个面的面积要算呢?该怎么算呢大家做一做?(出示答案)完了吗?(没有)那我们要用什么法呢?(进一法)

通过刚才的学习我们知道是不是所有的圆柱的表面积都是要求三个面吗?(不是)对要根据实际情况分清楚,要求的是哪几个面比如?(出示图片请同学们回答)

三、练习

四、小结

同学们这节课你有什么收获呢

五、课后作业

六年级数学下册《圆柱的表面积》

教学设计

竹寨小学 聂磊

?圆柱体的表面积》教学设计

一、教学目标:

1、知识与技能目标:理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

2、过程与方法目标:操作活动中,使学生经历认识圆柱的侧面积和表面积的过程,掌握它们的特征。

3、情感态度目标:通过观察、想象、操作等活动,让学生体验到数学知识的广泛性、挑战性,体会数学与生活的联系。

二、教学重难点

教学重点:应用圆柱体侧面积和表面积的计算方法,解决实际问题 教学难点:探究并推导出圆柱侧面积、表面积的计算公式。教学准备:实物圆柱体、多媒体课件

三、新授课

(一)、温故引新巧妙入境

1、上节课,我们一起学习了一种新的立体图形,是什么?在日常生活中我们也见到过许许多多的圆柱形物体,想一想,它们有什么共同特征?

2、哦,仅仅通过一节课的学习,大家就掌握了这么多关于圆柱的知识,真了不起!

今天,我们学校前面的加工厂接了一桩大生意,让我们一起来看看!(电脑出示)

(二)、情境探究引出主题(1)、出示产品订货单 产品类型:薯片盒

产品规格:底面半径为3厘米,长10厘米。订购数量:10000个 交货日期:2010年5月13日 订购单位:苗苗副食品加工厂 订货时间:2010年4月27日

如果你是这家工厂的老板,你首先会考虑什么问题?他该购进多少材料呢?大家愿不愿意帮他解决这个问题?

(三)、动手操作结合课件理解重难点

1、认识表面积。

请同学们拿出课前准备的圆柱纸筒,现在假如它就是一个薯片盒,你们能算出做这样的一个薯片盒,需要多少材料吗?其实这就是求圆柱形薯片盒的?

以前我们学过长方体和正方体的表面积,想一想,圆柱的表面积应该指什么?(一生边指边说)

那你能用一个等式来表示圆柱的表面积吗?圆柱的侧面积加上两个底面的面积就是圆柱的表面积。现在一边指着薯片盒一边把刚才的发现说两遍!(生说师板书)指着式子问:我们已经会求什么了?难点是什么?所以这节课,我们就重点研究圆柱的侧面积。

2、探究圆柱侧面积的求法。

拿出你们带来的圆柱形物体,动手操作,去探究,去发现!在探究之前,请先看老师给你的探究提示。(大屏幕出示探究提示:a、你能把圆柱的侧面转化成我们已学过的平面图形吗?

b、转化后的图形与圆柱的哪部分有关系?有什么关系?你能推导出圆柱侧面积的计算公式吗?)

先自己思考,然后再小组内讨论。

汇报各组的发现。预设:学生可能在探究的过程中转换成不同的图形,重点感受圆柱体侧面沿高剪开后是一个长方形。

老师看大多数同学都把圆柱的侧面转化成长方形,那这个长方形与圆柱的哪部分有关系,有什么关系?谁来继续汇报?

真的像同学们说的这样吗?请看大屏幕!

真的像许多同学说的那样,圆柱体的侧面沿高剪开后是一个长方形,长方形的宽相当于圆柱的高,那么,长方形的长呢?请同学们认真看大屏幕!说说你看到了什么?

看到这里,你能根据长方形的面积公式推导出圆柱侧面的面积公式吗? 你是怎样推导的?小组内说一说,一会儿看谁能到黑板上把自己的推导过程清晰地写出来?(有的学生可能把圆柱的侧面转化成其他图形,让学生说说自己的想法。然后电脑动画演示这些图形都能转化成长方形)

3、完成完整的表面积推导公式。

(四)、巩固应用拓展提高

1、基本练习

求圆柱体的侧面积,只列式,不计算 a、底面周长 10米,高0、5米 b、底面半径2分米,高5分米 c、底面直径20厘米,高5厘米 求圆柱体的表面积,只列式,不计算 a底面周长10米,高0、5米 b底面半径2分米,高5分米 c底面直径20厘米,高5厘米

2、变式练习

a现在,你能帮助加工店的老板解决问题了么? 思考:

生活中求一个圆柱形物体的用料情况时,是不是都得用:侧面积加两个底面积呢?举例说明。课件出示

要求下列圆柱形物体用料的面积,应计算哪些面的总面积? 油桶、笔筒、下水管、通风管

通过这道题,你想提醒提醒大家什么? b想想,在练习本上做下面的题

(1)、一个圆柱形铁桶(无盖),高5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

(2)、一个圆柱底面直径是5厘米,把它的侧面展开正好是一个正方形,它的侧面积是少平方厘米?

(3)、一个圆柱形水池,从池里面量,底面直径是4米,深1.5米。在池的内壁与底面抹上水泥,抹水泥部分的面积是多少平方米?

3、发展练习(1)、把一根长2.1米,底面半径是0.5分米的圆柱形钢材平均截成3段,表面积增加了多少?

(2)、做一个直径是30厘米的铁皮烟囱,高3.2米,接口处占2厘米,至少要用铁皮多少平方米?

课堂小结:通过本节课你有哪些收获? 布置作业:

圆柱教学设计篇6

一、教学内容

教材第25页 例5、例6

二、学习目标

1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

三、教学重难点

1、重点:理解、掌握圆柱的体积公式的推导过程。

2、难点:圆柱体积公式的推导过程。

四、教学准备

多媒体课件

五、教学过程

创设情境、生成问题师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)

生答:长方体的体积用长x宽x高,正方体的体积是用棱长x棱长x棱长,或者用一个公用的底面积x高来计算

师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

板书:圆柱的体积(课件)

探索交流、解决问题1、猜想

师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?

(生自由猜想,并讨论交流)师适当板书记录

刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和xxxx有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下

(课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)

师:第一组图片中的两个圆柱有什么特征?

生:底面一样,但是高度却不一样,体积也不一样

师:第二组图片中的两个圆柱有什么特征?

生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样

师:那么通过刚才两个同学的回答,你能得出什么结论呢?

小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小

师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

生猜想......

师:我们的猜想对不对,还是要用实验去证明

2、推导圆柱体积计算公式

师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法

生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

(课件出示作业纸)对应和公式推导

选取小组的作业纸进行展示,有其他同学进行评定

课件演示结果

小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

巩固应用、内化提高2、

3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

8cm

8cm

498ml

498ml

10cm

10cm

回顾整理、反思提升今天这节课你有什么新的收获说出来和大家一起分享吧!

圆柱教学设计篇7

评价样题:

学习流程:

一、创设现实情境,增强探究欲望。

1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?

如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)

看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、亲历建构过程,提高探索能力。

1、提出问题,大胆猜想

你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?

(鼓励学生大胆猜测,说出自己的想法)

2、回顾旧知,帮助迁移

同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?

(演示课件:圆转化成长方形)

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

4、小组合作,验证猜想

下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。

(出示合作提纲)小组长做好分工,并完成记录表。

活动记录表

思考:

1、圆柱体可以转化成哪种立体图形?

2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?

3、怎样用简捷的形式表示你推导出来的公式呢?

活动过程:

1、我们用方法,把圆柱体转化成了体。

2、在这个转化的过程中,变了,没有变。

3、通过观察比较,我们发现:把一个圆柱体的底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的(),高就是圆柱体的()。因为,长方体体积=(),所以,圆柱体的体积计算公式是v=()。

5、全班交流,展示评价。

评价交流中,借助评价样题。同时课件演示切拼的过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的发现引导学生推导出:

圆柱的体积=底面积×高,

用字母表示v = sh。

7、反馈练习。

(1)要求圆柱体积,必须知道哪些条件?

(2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。

圆柱的体积教学设计 相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案

圆柱教学设计篇8

?教学过程】

一、揭示课题,确定目标

谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)

启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)

引导:

(1)什么是圆柱的体积?

(2)圆柱的体积和什么有关?

(3)圆柱的体积公式是怎样推导出来的?

(4)圆柱的体积是怎样求出来的?

(5)学习圆柱的体积公式有什么用?

谈话:对!刚才这几位同学跟老师想的一样。

启发:圆柱的体积就是圆柱所占空间的大小

谈话:这堂课我们主要解决三个问题:(出示探究问题)

1、圆柱的体积和什么有关?

2、这个公式是怎样推导出来的?

3、学习了圆柱的体积能解决什么实际问题?

?设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。

二、温故知新,自学课本

1、提出问题

谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计 算的?

引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。

谈话:长方体的体积=长×宽×高

正方体的体积=棱长×棱长×棱长

统一为:长方体或正方体的体积=底面积×高

谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?

引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。

谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接 用体积单位去量呢?

引导:它的侧面是一个曲面,用体积单位直接量是有困难的。

2、引发猜想

谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)

引导:圆柱体的体积既和底面积有关,又和高有关。

3、自学课本

谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?

启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)

引导:我们用图形转化的方法,求圆柱的体积。

谈话:这个办法很好。那么把圆柱转化成什么图形呢?

引导:长方体。

谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。

(用多媒体演示圆形的转化过程,边出示、边交流)

?设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。

三、合作交流 发展能力

谈话:同学们观察一下,拼成的是什么图形?

引导:近似的长方体。

启发:说得很好,为什么说是近似的长方体,哪里不太像?

引导:长都是许多弧线组成,不是直的。

谈话:这里我们把圆柱分成16等分,还能分吗?

谈话:究竟能分多少份呢?

引导:无数份,可以永远分下去。

谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。

四、师生合作 归纳结论

谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?

汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。

谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。

汇报:

(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。

(2)转化后的近似长方体的高与原来的圆柱体的高相等。

因为:长方体的体积=底面积×高

所以:圆柱的体积 =底面积×高

(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)

长方体的体积=底面积×高

圆柱的体积 =底面积×高

交流:我们也可以用字母表示圆柱的体积计算公式:v = s h (板书)

引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。

现在请同学们把圆柱体积公式的推导过程再完整地说一遍。

谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。

通过分一分、拼一拼我们把圆柱转化成了近似的长方体。

通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。

?设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。