圆柱的体积教学设计5篇

时间:2023-04-02 作者:tddiction 教学计划

教学工作有一个必做的步骤,那就是备课,写好教学设计,保证课堂可以教学成功的关键就是进行教学设计的制定,下面是范文社小编为您分享的圆柱的体积教学设计5篇,感谢您的参阅。

圆柱的体积教学设计5篇

圆柱的体积教学设计篇1

教学内容:

青教版九年义务教育六年制小学数学六年级下册第23—28页。

教材简析:

该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。

教学目标:

1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。

2、经历探索圆柱计算公式的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

教学重点和难点:

圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。

教具准备:

多媒体课件、圆柱体积学具、沙子等。

第一课时

教学过程:

一、创设情境,激趣引入。

谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)

课件出示:两个圆柱体冰淇淋。

谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?

(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)

设计意图:

从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。

二、回忆旧知,实现迁移。

谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?

(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

设计意图:

通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。

三、利用素材,探索新知。

??交流猜测

谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?

生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?

师谈话:你的想法很好,怎样转化呢?

生讨论,交流。

生汇报,可能会有以下几种想法:

1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。

2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。

3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。

谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。

??实验验证

学生动手进行实验。

谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

学生合作操作,集体研究、讨论、记录。

设计意图本环节让学生亲自动手操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。

四、分析关系,总结公式

1、全班交流

谈话:哪个小组愿意展示一下你们小组的研究结果?

引导学生发现:

转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。

2、分析关系

引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

3、总结公式。

谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。

(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)

谈话:你发现了什么?

引导观察:分的份数越多,拼成的图形就越接近长方体。

(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的'底面积。)

谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。

根据学生的回答教师板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

谈话:你能用字母表示圆柱的体积计算公式吗?v=sh

设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。

五、利用公式,解决问题。

自主练习第1题、第2题、第3题

设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。

六、课堂总结

圆柱的体积教学设计篇2

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

圆柱体体积的计算

教学难点:

圆柱体体积公式的推导

教学用具:

圆柱体学具、

教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米; (2)d=4分米; (3)c=6.28米。

要求说出解题思路。

2.提问:什么叫体积?常用的体积单位有哪些?

3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2、公式推导。(有条件的可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

3、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

4、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

5、教师演示。

把圆柱拼成了一个近似的长方体。

6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

出示讨论题。

(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积 底面积 高

圆柱体积 底面积 高

8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

9、用字母如何表示。

v=sh

10、小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

11、教学算一算

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

12、教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。

三、巩固练习

课后“练一练”里的练习题。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式v=sh。

圆柱的体积教学设计篇3

【学习目标】

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

【学习过程】

一、板书课题

师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

二、出示目标

本节课我们的目标是:(出示)

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

了达到目标,下面请大家认真地看书。

三、出示自学指导

认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

1、圆柱的体积公式是如何推导出来的?

2、圆柱的体积计算公式是什么?用字母如何表示?

5分钟后,比谁能做对检测题!

师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测(找两名学生板演,其余生写在练习本上)

第20页“做一做”和第21页第5题。

要求:1、认真观察,正确书写,每一步都要写出来。

2、写完的同学认真检查。

五、后教

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看第1题:认为算式列对的请举手?

?圆柱的体积=底面积×高】

2、看第2题:认为算式列对的举手?你是怎么思考的?

3、看计算过程和结果,认为对的举手?

4、评正确率、板书,并让学生同桌对改。

今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

六、补充练习:

1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

七、当堂训练(课本练习三,第21页)

作业:第3、4、7、8题写作业本上

练习:第1题写书上,第2、6、9、10题写练习本上

八、板书设计

课题三:圆柱的体积

圆柱的体积=底面积×高

课后反思:

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱的体积教学设计篇4

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体

积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验

在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。

教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。

总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!

圆柱的体积教学设计篇5

教学过程

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh

三、巩固发展

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

5、拓展练习

(1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

四、全课小结:

谈谈这节课你有哪些收获。

教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程