圆柱的体积例7教学设计5篇

时间:2023-04-02 作者:lcbkmm 教学计划

在教学开始之前,大家一定都有明确的目标,为此一定要写好相关的教学设计,通过书写一份教学设计,从而使接下来的教学工作顺利进行,下面是范文社小编为您分享的圆柱的体积例7教学设计5篇,感谢您的参阅。

圆柱的体积例7教学设计5篇

圆柱的体积例7教学设计篇1

【教学过程】

一、揭示课题,确定目标

谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)

启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)

引导:

(1)什么是圆柱的体积?

(2)圆柱的体积和什么有关?

(3)圆柱的体积公式是怎样推导出来的?

(4)圆柱的体积是怎样求出来的?

(5)学习圆柱的体积公式有什么用?

谈话:对!刚才这几位同学跟老师想的一样。

启发:圆柱的体积就是圆柱所占空间的大小

谈话:这堂课我们主要解决三个问题:(出示探究问题)

1、圆柱的体积和什么有关?

2、这个公式是怎样推导出来的?

3、学习了圆柱的体积能解决什么实际问题?

?设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。

二、温故知新,自学课本

1、提出问题

谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计算的?

引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。

谈话:长方体的体积=长×宽×高

正方体的体积=棱长×棱长×棱长

统一为:长方体或正方体的体积=底面积×高

谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?

引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。

谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接用体积单位去量呢?

引导:它的侧面是一个曲面,用体积单位直接量是有困难的。

2、引发猜想

谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)

引导:圆柱体的体积既和底面积有关,又和高有关。

3、自学课本

谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?

启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)

引导:我们用图形转化的方法,求圆柱的体积。

谈话:这个办法很好。那么把圆柱转化成什么图形呢?

引导:长方体。

谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。

(用多媒体演示圆形的转化过程,边出示、边交流)

?设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。

三、合作交流发展能力

谈话:同学们观察一下,拼成的是什么图形?

引导:近似的长方体。

启发:说得很好,为什么说是近似的长方体,哪里不太像?

引导:长都是许多弧线组成,不是直的。

谈话:这里我们把圆柱分成16等分,还能分吗?

谈话:究竟能分多少份呢?

引导:无数份,可以永远分下去。

谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。

四、师生合作归纳结论

谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?

汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。

谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。

汇报:

(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。

(2)转化后的近似长方体的高与原来的圆柱体的高相等。

因为:长方体的体积=底面积×高

所以:圆柱的体积=底面积×高

(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)

长方体的体积=底面积×高

圆柱的体积=底面积×高

交流:我们也可以用字母表示圆柱的体积计算公式:v=sh(板书)

引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。

现在请同学们把圆柱体积公式的推导过程再完整地说一遍。

谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。

通过分一分、拼一拼我们把圆柱转化成了近似的长方体。

通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。

?设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。

圆柱的体积例7教学设计篇2

教学内容:

人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积。

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式。

教学难点:

圆柱体积计算公式的推导过程。

教学过程

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)

二、自主探究

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh

三、巩固发展

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?

5、拓展练习

(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

四、全课小结

谈谈这节课你有哪些收获。

圆柱的体积例7教学设计篇3

教学目标:

1、结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式。

教学准点:

掌握圆柱体积公式的推导过程。

教学设想:

1、课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

2、教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。

3、动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

4、用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。

5、体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。

6、最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

7、由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。

教学过程:

一、问题导入,质疑问难

师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?

师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?

生:圆柱学具。

师:是的。仔细观察,你有什么发现?

生:圆柱学具占据了学具槽的空间。

师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?

生:圆柱的体积就是圆柱所占空间的大小。

师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。

生:体积大小接近,不能确定。

师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)

二、图形转化。猜想推理

师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。)生:用公式计算。生:用水或沙子转化计算。师:你们是怎样转化的,具体说说。

生:用橡皮泥转化计算。

生:用圆形纸片叠加计算……

师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?

生:因为没有实验学具,所以只能用公式计算。

师:其他的方法可以在课后进行。

师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。

生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。

师:联系旧知识,采用转化法,确实不错。师:那现在它是一个圆柱,你想怎么办?

生:像刚才一样进行平均分。

师:你能具体说说吗?

生:沿着圆柱的底面直径平均切分成16个小扇形。

师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。

生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。

师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……

师:这是同学们刚才的转化过程。

师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。

师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)

总结文字公式:长方体体积=底面积×高

圆柱体体积=底面积×高

师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。

生:v=shv=(d/2)2π×hv=π2×hv=(c÷π/2)2π×h

师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)

生:相同之处都是底面积乘以高,不同是底面积求法不同。

师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。

三、运用公式,解决问题

师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。

1号底面积50平方厘米,高2。1分米:

2号直径是10厘米,高20厘米;

3号半径是4厘米,高22厘米;

4号底面周长31。4厘米,高18厘米。

师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?

师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?

师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。

四、巧用公式,多重探究

师:同学们到现在为止,你都学到了哪些关于圆柱的知识?

生:表面积、体积、容积。

师:老师这里有一组习题。请你们选择合适的问题。

师:读完之后,你认为求什么就可以大声地说出来。

(生:体积、容积、表面积。)

学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?

师:说说你选择问题的根据是什么?

生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。

五、开放训练,拓展提升

师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。

圆柱的体积例7教学设计篇4

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

圆柱体体积的计算

教学难点:

圆柱体体积公式的推导

教学用具:

圆柱体学具、

教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)c=6.28米。

要求说出解题思路。

2.提问:什么叫体积?常用的体积单位有哪些?

3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2、公式推导。(有条件的可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

3、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

4、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

5、教师演示。

把圆柱拼成了一个近似的长方体。

6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

出示讨论题。

(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积底面积高

圆柱体积底面积高

8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

9、用字母如何表示。

v=sh

10、小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

11、教学算一算

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

12、教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。

三、巩固练习

课后“练一练”里的练习题。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式v=sh。

圆柱的体积例7教学设计篇5

【教材简析】:

本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

【教学内容】:

p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

【教学目标】:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力。

3、渗透转化思想,培养学生的自主探索意识。

【教学重点】:

掌握圆柱体积的计算公式。

【教学难点】:

圆柱体积的计算公式的推导。

【教学过程】:

第一课时

本册总课时:1—2课时

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、什么叫做物体的体积?你会计算下面那些图形的体积?

3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

(3)通过观察,使学生明确:

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积×高,所以圆柱的体积=底面积×高,

v=sh

圆柱的体积计算公式是:

v=sh

2、课堂练习。

(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

(2)指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)让学生解答和板算,最后师生共同完成、

解:v=sh

=75×90

=675(立方厘米)

答:它的体积是675立方厘米。

3、引导思考。

如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(v=πrh)

4、作业。