五年级上册的数学教案8篇

时间:2022-11-27 作者:Trick 备课教案

通过教案的文字是可以看出教师对待工作的态度的,联系实际是我们在写教案的时候要注意的,同时也要认真对待,以下是范文社小编精心为您推荐的五年级上册的数学教案8篇,供大家参考。

五年级上册的数学教案8篇

五年级上册的数学教案篇1

教学目标:

1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。

2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。

教学重点:

能够熟练地理解字母表示数,数量关系。

教学难点:

能够熟练并正确地解简易方程。

教学过程:

一、揭示课题

我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。

二、复习用字母表示数

1、用含有字母的式子表示

(1)求路程的数量关系。

(2)乘法交换律。

(3)长方形的面积计算公式。

让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?

2、做“练一练”第1题。

让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。

3、做练习十四第1题。

指名学生口答。选择两道说说是怎样想的。

三、复习解简易方程

1、复习方程概念。

提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

2、做“练一练”第2题。

小黑板出示,学生判断并说明理由。提问:5x—4x=2里未知数x等于几,x=2是这个方程的什么?7×0.3+x=2.5里未知数x等于几?x=0.4是这个方程的什么?那么,什么叫做“方程的解”?(板书定义)它与“解方程”有什么不同?(强调解方程是一步一步完成的过程)你会解方程求出方程的解吗?根据什么解方程?

3、解简易方程。

(1)做“练一练”第3题第一组题。

指名两人板演,其余学生做在练习本上。集体订正:解第一个方程是怎样想的,检查解方程时每一步依据什么做的。第二个方程与第一个有什么不同,解方程时有什么不同?指出:解方程时先看清题目,根据运算顺序,能先算的就先算出来。不能算的就看做一个未知数。我们现在解方程是一般根据加减法之间、乘除法之间的关系来进行的。(结合板书:解方程:能先算的要先算,再按各部分关系来解)追问:这两题可以怎样检验方程的解对不对?

(2)做“练一练”第3题后两组题。

指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。

(3)做“练一练”第4题。

让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。

四、课堂小结

今天复习了哪些知识?你进一步明确了什么内容?

五、布置作业

课堂作业;完成“练一练”第4题解方程;练习十四第2题,第3题后三题,第4题。

家庭作业;练习十四第3题前三题、第5题。

五年级上册的数学教案篇2

教学内容:义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。

教学目标:

1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

教学重点:探索数的奇偶性变化规律。

教具学具准备:数字卡片,盒子,奖品。

教学过程:

复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)

活动1:数的奇偶性在生活中的应用。

(一)激趣导入。

清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?

(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况

开、关;开、关;开、关;开、关;开、关;开、关……

让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?

3、第二次汇报交流。

投影下表:

用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。

(三)巩固应用。

1、看书学习并解决小船的靠岸问题。

2、解决杯子上下翻转,杯口的朝向问题。

3、举例说说数的奇偶性还能解决哪些生活问题?

(四)活动小结。

当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。

活动2:探索奇、偶数相加的规律。

(一)有奖游戏。

1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。

2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。

3、引发思考。

师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?

4、发现规律。

学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。

5、举例验证。

6、修改游戏规则。

(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?

(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)

(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。

(3)举例验证:奇数+偶数=奇数

(二)总结奇、偶数相加的规律。

奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。

(三)应用规律解决问题。

1、不计算,判断下列算式的结果是奇数还是偶数。

10389+200411387+131268+1024

2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?

全课小结:说说这节课有什么收获?

五年级上册的数学教案篇3

教学目标:

知识与技能目标

通过猜测—验证—应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用

过程与方法目标

能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。

情感态度与价值观目标

让学生相互交流、合作、体验成功的喜悦

教学重点:

探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。

教学难点:

运用运算定律进行小数乘法的简便计算。

学情分析:

五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

教法学法:

本节课我主要采用“自主探究,合作交流,汇报验证”等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:

1、情景创设法。

2、活动探究法。

3、集体讨论法。

教学流程:

创设情景,导入新课——自主探索,解决问题——精心选题,多层训练,——质疑总结,反思评价。

第一环节:创设情境,导入新课。

上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?

学生们会回答:乘法交换律、乘法结合律和乘法分配律。

接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。

在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究热情,让他们有目标的去思考。

第二环节:自主探索,解决问题。

本环节我设计了以下几个教学活动。

(一)小组合作,猜测验证

1、用幻灯片出示以下题目。

0.7×1.2○1.2×0.7

(0.8×0.5)×0.4○0.8×(0.5×0.4)

(2.4+3.6)×0.5○2.4×0.5+3.6×0.5

让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)

2、学生自己探究,验证。

让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的。

接着我引导学生们仔细观察每一组算式,它们有什么特点?

学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。

3、举例验证。

我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?

孩子们可能有两种意见:能或是不能。

针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。

(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)

学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。

在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)

在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。

(二)灵活应用,解决问题

出示例题8

师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。

0.25×4.78×4 0.65×201

(1)让学生独立思考,然后尝试写在练习本上。

(2)指名让学生板演。

然后我会让孩子们思考:第①题中为什么先让0.25和4相乘?这里运用了什么运算定律呢?

孩子们会自然而然的答出:运用了乘法交换律

接着问他们:你们认为第②小题中解题的关键是什么?

学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)

然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)

在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的热情,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。

第三环节:精心选题,多层训练。

本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。

练习题组设计如下

通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

第四环节:质疑总结,反思评价。

用幻灯片出示以下两个问题

让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。

在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。

五年级上册的数学教案篇4

教学内容:

教材p44-p46例1-例3 做一做,练习十第1-3题

教学目标:

知识与技能

1.使学生理解用字母表示数的意义和作用。

2.能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公并能初步应用公式求周长、面积。

3.使学生能正确进行乘号的简写,略写。

过程与方法

经历用字母表示数的理解过程,体验迁移推理的学习方法,渗透求未知数的思想。

情感态度与价值观

在学习活动中,使学生获得热爱数学知识的积极情感,沟通算数知识与代数知识之间的联系,培养学生的抽象思维能力。

教学重点:

理解用字母表示数的意义和作用

教学难点:

能正确进行乘号的简写,略写。

教学过程:

一、谈话激趣,引入课题

同学们,在生活中只要我们去认真的观察思考,就会发现很多的知识。大家看,老师在生活中找到一些这样的字母,你们知道它们都代表了什么吗?(利用生活中的经验把学生带入数学。)

课件出示:cctv kfc nba qq (中国中央电视台 肯德基 美国男子篮球联赛 腾迅聊天工具)

大家想想,用这些字母来代替这些名称有什么样的好处?

(简单好记。渗透用字母表示的优越性)

其实,这样的字母不仅仅我们日常的生活中经常可以看到,我们在数学的世界里也经常会用到,今天我们就来学习用字母表示数(板书课题)

二、探究新知

1.投影出示例1:(探秘)

(1)观察第一组三角形中的数字,你有什么发现?

(都是按规律排列的,三角形两底角的数字之和等于顶角上的数字)

那么图中的符号表示什么数字呢?(指名口答)

问:每行图中的数是按什么规律排列的?(指名口答)

(2)尝试练习:想一想、填一填(课件出示)

①2、4、6、c、10、12 c=( )

②b+ b + b=24 b=( )

③a×5=40 a=( )

观察一下,你有什么发现?(不同的字母可以表示相同的数)。提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都

是用一些符号或字母来表示的)

师:在数学中,我们经常用字母来表示数。

问:你还见过那些用符号或字母表示数的例子?

如:扑克牌,行程a、b两地,c大调„„。

2、教学例2

(1)a×b=b×( )

a+b=( )+( )

(课件出示)

师:你怎么想到要填a,你的根据是什么?

生:我是根据乘法的交换律和加法的交换律来填的。

师:如果用a、b、c来表示三个数,你们能用字母表示出其它运算定律吗?

学生尝试写,后汇报展示。

(2)你们认为用字母来表示运算定律有什么好处?

我们已经学过了一些运算定律,你会把它们表示出来吗?

同桌之间先说一说运算定律是怎么样的,如何用字母表示出来,然后指名汇报。

师:我们用字母表示出这些运算定律,你有什么体会?

组织学生交流,使学生明确:用字母表示运算定律,简明易记,便于应用。

(3)让学生看书45页的“你知道吗?”然后汇报字母还可以表示哪些计量单位。

3.教学简写

(1)师:观察6×x,你们发现了什么?(x和×长的很象),因为这个,在数学王国里曾经引发过一场风波:一天早朝上,乘号对国王说:“国王,我和x长的太象了,您得想个办法把我们区分开来呀。”国

王下令:“+”“-”“÷”先行退朝,“×”号留下下议事。第二天,国王宣布了以下规定:(多媒体出示)

①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写。省略乘号时,一般把数字写在字母的前面。如:a×b=a.b=ab, 4×a=4.a =4a ②两个相同字母相乘时,可以写成以下形式:如:a×a=a.a=a2 读作:a的平方,表示2个a相乘。

③当数字1与字母相乘时,1也省略不写。如:1×m=m (2)学生四人小组为单位讨论学习国王的规定:

教师提出小组合作学习的要求:

组长组织,要求每个组员都要发表意见。

记录员记录学习过程。

4、阶段练习

1、省略乘号写出下面各式。

2、小小审判官。

⑴6+a可以简写作6a。 ( )

⑵6×4可以简写作6.4 ( )

⑶x2与2 x所表示的意义相同。( )

5、教学例3。

今天我们跟字母成了好朋友,其实以前也和字母打过交道,比如计算公式。

回顾:你们能用含有字母的式子表示学过的计算公式吗?

如果周长用字母c表示,面积用字母s表示,边长用字母a表示,你会用字母表示正方形的周长和面积吗?

c= s= 还记得我们学过哪些运算定律吗?那能不能用字母它们呢?真自信。好!下面请大家写在练习本上。

反馈:说说表示的是什么计算公式?师:你们能利用这些计算公式进行计算吗?试一试。

出示例题:你能利用公式计算下面正方形的面积和周长吗?(黑板贴出正方形纸片)

师:6㎝表示什么意思吗?

生:表示正方形的边长是6厘米。

师:你们能求出它的面积和周长吗?

(请一名学生上黑板来做,其余学生在下面练习)

师:谁来评价一下他做得怎么样?

生1:我认为做得比较可以。

生2:我认为他的面积单位应写成㎝2,不应写成㎝。

师:看看老师是怎么做的?

师:“利用公式计算”就是要求我们在计算时先写出公式,然后把字母表示的数值代入公式进行计算。

三、轻松一刻,发展提高。

(一)数青蛙

同学们学得真好,现在我们来轻松一下。

(课件):1只青蛙1张嘴,2只眼睛4条腿;

2只青蛙2张嘴,( )只眼睛( )条腿;

3只青蛙( )张嘴,( )只眼睛( )条腿; „„

( )只青蛙( )张嘴,( )只眼睛( )条腿。

我们先试着读一读。你能用一句话说说这首儿歌吗?

(二)练兵营

填空

1、用a、b、c表示三个数,乘法分配律可表示成( )。

2、用字母a表示苹果的单价,b表示数量,c表示总价。那么 c=( ),b=( )。

3、一个等边三角形,每边长a米。它的周长( )米。

4、一辆汽车t小时行了300千米,平均每小时行( )千米。李师傅每小时加工40个零件,加工了a小时,一共加工了( )个。

5、5x+4x=( )

8y-y=( )

7x+7x+6x=( )

7a×a=( )

15x+6x=( )

5b+4b-9b=( )

选择(将正确答案的序号填在括号里)

1、a2与( )相等。

(1)a×2 (2)a+2 (3)a×a 2、2x一定( )x2。

(1)大于

(2)小于

(3)等于

(4)不能确定

3、丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小( )岁。

(1)2 (2)b-a (3)a-b (4)b-a+2 4、当a=5、b=4时,ab+3的值是( )。

(1)5+4+3=12 (2)54+3=57 (3)5×4+3=23

四、走进名人屋

最早使用字母来表示数的人是法国数学家韦达,韦达一生致力于对数学的研究,作出很多重要贡献,成为那个时代最伟大的数学家,自从韦达系统使用字母表示数后,引出了大量的数学发现,解决很多古代的复杂问题。

师:看了介绍你想对韦达说点什么吗?

生1:韦达,我要对你说,你的智慧真是不可限量。

生2:韦达真伟大,你发明的用字母表示数使人类生活和学习方便了许多,谢谢你!

师:你们想不想像韦达一样将来做一个成功的人?

师:那好,老师这里就有一个成功秘诀,想不想知道。

课件出示:a=x+y+z a代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。

师:看了这个公式,你得到了什么启示?

生:我知道了只要艰苦劳动,掌握了方法,少说空话,就能成功。

师:说得真好,只要同学们在今后的学习中掌握好正确的方法,刻苦努力,少说空话,一定能够取得成功!祝你们早日成功!

五、课堂小结,质疑评价。

阅读课本第44-46页。四人小组交流,汇报

这节课你们有收获吗?你们有收获就是老师今天的收获。谁来说说你收获些什么?最成功的地方是什么?还有什么问题?

六、作业

第49页练习十第1、2、3题

五年级上册的数学教案篇5

教学目标

1.通过收集图案,小组交流,感受图案的美,并为自身以后创作图案提供借鉴。

2.通过欣赏图案,发展同学的审美意识和空间观念。

3.自身经历创作实践的整个过程,感受创作的乐趣,进一步培养同学的审美情趣。

重点难点:

1.进一步利用对称、平移、旋转等方法绘制精美的图案。

2.加深感受图形的内在美,培养同学的审美情趣。

教学准备:

课件、方格纸、正方形白板纸、手工纸三张和剪刀等。

教学过程:

一、展览导入

课前让同学收集图案,以小组为单位进行交流。

考虑:这些图案是怎样设计的,它有什么特点?

指名介绍本组中最美的图案,并结合考虑说一说它的特点。

二、学习新课

(一)尝试发明:

让同学做第8页第1、2题。

1、鼓励同学用学过的图形设计图案,对不同的同学提出不同的要求。

2、交流时,教师对有创意、绘图美观的同学给予褒扬和激励。

(二)设计图案:

做第10页“实践活动”7题。

1、提出三个步骤:

(1)先选择一个喜欢的图形;

(2)再确定你选用的对称、平移和旋转的方法;

(3)动手绘制图案。

2、分别利用对称、平移和旋转创作一个图案后,全班交流。

三、巩固练习

(一)反馈练习:

1、制作“雪花”:

取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。

2.作品展示。

3、独立观察并尝试做第9页第5题。

四、全课总结

全班交流各自的作品,选出好的`作品互相评价,全班展览。

五年级上册的数学教案篇6

学习目标:

1、理解加减法统一成加法运算的意义.

2、会将有理数的加减混合运算转化为有理数的加法运算.

3、培养学习数学的兴趣,增强学习数学的信心.

学习重点、难点:有理数加减法统一成加法运算

教学方法:讲练相结合

教学过程

一、学前准备

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米

记作 +4.5千米 —3.2千米 +1.1千米 —1.4千米

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米.

2、你是怎么算出来的,方法是

二、探究新知

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写

如:(-20)+(+3)-(-5)-(+7) 有加法也有减法

=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法

= -20+3+5-7 再把加号记在脑子里,省略不写

可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.

4、师生完整写出解题过程

三、解决问题

1、解决引例中的问题,再比较前面的方法,你的感觉是

2、例题:计算-4.4-(-4 )-(+2 )+(-2 )+12.4

3、练习:计算 1)(—7)—(+5)+(—4)—(—10)

三、巩固

1、小结:说说这节课的收获

2、p241、2

3、计算

1)27—18+(—7)—32 2)

四、作业

1、p255 2、p26第8题、14题

五年级上册的数学教案篇7

平均数的初步认识

教学目标:

1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

2、能正确列式解答“求平均数”问题。

教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

教学过程:

一、引入

1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

二、新授

1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

生:用4来表示……; 用5来表示……。

师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

师:你觉得用几来代表他1分钟的水平呢?

生:计算,是4。

师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

生:3+7+2=12个 12÷3=4个(板书算式)

生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)

师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

我们说,4是3、7、2这3个三个数的平均数。

那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

生:他投了3次,所以4是3、4、5的平均数。

师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

老师第四次投中了1个。我赢了还是输了?算一算。

如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

三、练习

1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……

不然移多补少补给谁去呢?

2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

出示水下图片。

师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。

四、总结

五年级上册的数学教案篇8

教学目标:

1、初步建立公倍数和最小公倍数的概念;

2、初步培养学生的数学应用意识与解决简单实际问题的能力。

3、培养学生的比较推理与抽象概括能力。

教学重点:

公倍数与最小公倍数的概念建立。

教学难点:

运用“公倍数与最小公倍数”解决生活实际问题

教法学法:

根据教学的要求,结合教材的特点,为了完成教学任务,我主要采用情景教学法,创造生动具体的教学情境,使学生在愉快的情景中学习数学知识。学生通过独立思考、小组合作的方法进行学习。独立思考可以使每个人深入的探究、冷静的分析;小组合作,可以更全面的思考,解题思路得以发散。

教具准备:

印有月历纸。

教学过程:

一、创设情境,设疑引入

教师谈话:从11月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打

算等爸爸妈妈休息时,全家一块儿去公园玩。(小黑板出示:小兰一家和一张11月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找小兰妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出小兰爸爸和妈妈共同的休息日了。

根据学生的回答,教师逐步完成以下板书

妈妈的休息日:4、8、12、16、20、24、28

爸爸的休息日:6、12、18、24、30

他们共同的休息日:12、24

其中最早的一天:12

(以讲故事的形式提出问题,为学生提供了一个“公倍数”的实体模型,让学生借助“日期”这一具体有实际意义的“数”,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。)

二、激思引探,教学新知

1.几个数的公倍数和最小公倍数的概念教学

从“妈妈的休息日”、“爸爸的休息日”、“他们共同的休息日”、“其中最早的一天”分别引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”的概念,教师修改并完成板书。

4的倍数:4、8、12、16、20、24、28

6的倍数:6、12、18、24、30

4和6的公倍数:12、24

其中最小的一个:12

师:教师:为什么要打省略号呢?(因为一个数的倍数是无限的,不可能写出一个数的所有倍数).

师:请你仔细观察妈妈和爸爸的休息的日子又什么特点?(引出4的倍数和6的倍数,并板书)

师:在6的倍数和4的倍数中,你觉得哪些数字比较特别呢?(引出4和6的公倍数)师:其中最小的一个是12。(引出最小公倍数)

(通过引导学生对具体问题作进一步研究并根据研究结果修改板书,让学生亲身经历了一个从具体到抽象的数学化过程。通过这一过程,不仅能帮助学生借助生活经验理解数学知识,同时也能让学生感受到数学与生活的联系,体会到数学源于生活又高于生活的特点。)

2、及时练习

师:认识了那么多关于倍数的关系,我们就来用一用。完成(试一试)。

三、巩固练习

1、书本练一练的第一题

2、书本练一练的第三题

3、书本练一练的第四题。

4、判断题

(1)两个数的积一定是这两个数的公倍数。()

(2)两个数的积一定是这两个数的最小公倍数。()

(3)两个数的公倍数是无限的,而最小公倍数只有一个。()

此题从整体上挈领知识要点,要求学生对各项知识进行抽象的比较、类比,进而推理、概括,对知识有深入完整的理解。学生有条理地表述自己的思考过程,做到言之有理,用数学语言进行合乎逻辑的讨论与质疑。

四、课堂小结:学生回忆整堂课所学知识。

学生通过这一环节可以将整个学习过程进行回顾、按一定的线条梳理新知,形成整体印象,便于知识的理解记忆。

整节课的设计,我通过四个环节的教学设计来体现数学来源于生活,服务与生活的理念。我主要通过动手操作、自主探索等方法,限度发挥学生的主体作用,使学生在爱数学、学数学、用数学过程中获得知识。