小学数学分数教案模板5篇

时间:2023-01-04 作者:Anonyme 备课教案

教案是老师为了提高上课质量事先编写的文字材料,为了顺利的开展接下来的教学工作,提前制定教案是非常重要的,范文社小编今天就为您带来了小学数学分数教案模板5篇,相信一定会对你有所帮助。

小学数学分数教案模板5篇

小学数学分数教案模板篇1

教学目标

1、理解分数、小数互相转化的必要性,掌握分数和小数互化计算的方法。

2、能正确地将简单的分数化为有限小数,并能在解决实际问题时灵活运用。

3、通过对规律的猜想、验证和总结建立事物相互联系相互转化的辩证唯物主义观点。

教学过程:

(一)创设情境,自主探索

1、在比较中认识互化的必要性

师(课件出示课本情境图):请观察图表,说一说图的意义。

(在学生说的过程中,板书:林林0.4(小时);明明1/4(小时))

师:请同学们比一比,谁用的时间多一些?

(在比较时,可以先让学生估计,然后再精确比较)

生1:我们小组是把小时化成分钟来比较的。小数化成分数来比较大小的。0.4小时是24分钟,1/4小时是15分钟,所以林林用的时间多一些。

生2:我们小组用画图的方法来比较的。我画了10个同样的小格,0.4涂4格,而只涂2格半,所以林林用的时间多一些。

生3:我们小组也是用画图的方法来比较的。我画了100个同样的小格,0.4能涂40格,而只涂25格,所以林林用的时间多一些。

生4:我们小组把小数化成分数的方法来比较的。0.4是4个1/10,也就是4/10,约分后是2/5,大于1/4,所以林林用的时间多一些。

生5:我们小组把分数化成小数的方法来比较的。1/4=1÷4=0.25,0.4>0.25,所以林林用的时间多一些。

师:你们最喜欢哪种方案,为什么?

生1:我喜欢分数化成小数那个小组的方案。因为画图太麻烦了,而分数化成小数,直接用分数的分子除以分母就可以了。

生2:我喜欢小数化成分数的那个小组的方案。分数化小数有的时候除不尽很麻烦,画图也很麻烦,比较时间能化成分钟来比,如果其它单位的还得又一种化法。所以我喜欢把小数化成分数的方案。

生3:把小数化成分数再比较大小,分母不同的时候还得通分,也很麻烦,还不如具体问题具体分析。

......

师(小结):同学们回答的都很好,在我们的日常生活和进一步的学习中,常会遇到一些比较分数、小数大小的实际问题和分数、小数的混合运算。为了便于比较和计算,就需要把分数化成小数,或者把小数化成分数。

2、探索分数化小数

师:谁来说一说第5小组是用什么方法把分数化成小数的?

生:用分子除以分母的方法。

师:你是怎么想到用分子除以分母的方法化成小数的?

生:因为分数的分子相当于被除数,而分母相当于除数。

师:请你把71页“试一试”第2题这几个分数化成小数。

(学生独立解答,教师巡视指导。)

3、探索小数化分数的基本方法

师:老师问一下第4小组的同学,你们是用什么方法把小数化成分数的?

生:我们是根据小数的意义把小数化成分数的。

师:能具体的说一说吗?

生:0.4是4个十分之一,也就是十分之四,约分后是五分之二。

师:那0.04,0.004呢?

生:0.04是4个百分之一,也就是百分之四,约分后是二十五分之一;0.004是4个千分之一,也就是千分之四,约分后是二百五十分之一。

师:说的真不错,化成分数后,能约分的要约分,一直约分成最简分数。

师:请观察化简前的分数,分母与小数有什么关系?有没有规律?

(学生分小组讨论,汇报。)

生1:小数的位数与分母1后面的零的个数一样多。

生2:原来有几位小数,就在1后面写几个零作分母。

师:请再观察分子与小数有什么关系?

生:原来的小数去掉小数点后的数作分子,

师:请按照找出来的规律,把课本第71页“试一试”的第1题做到练习本上。

(二)练习提高

1、课本第72页练一练第1题,分数化小数。

2、判断是否正确,如果不对,请改正。

3、数学游戏:你说我答:同桌之间一个说分数一个说小数,互相交换着说。

(让学生熟记一些常用的分数与小数互化的结果)

4、比较各组数的大小(主要是对分数和小数的互化进行练习)。

5、在直线上面的括号里填上适当的分数,在下面的括号里填上适当的小数。

(三)小结延伸

师:本节课的学习你有哪些收获?

(四)实践活动

在生活中寻找用分数或小数表示的信息。

五、教学反思

小学数学分数教案模板篇2

教学内容:

教材第25~26页的内容及练习。

教学目标:

1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能运用分数除以整数的计算方法解决实际问题。

教学重难点:

1.探索并理解分数除法的意义。

2.探索并掌握分数除以整数的计算方法,能正确计算。

教学过程:

一、创设情景激趣揭题

1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。

2.引入并板书课题:分数除法(一)

二、扶放结合探究新知

1.提问:如果把这张纸的4/7平均分成2份,每份是多少?

2.把这张纸的4/7平均分成3份,又该怎样解决?

3.引导归纳分数除以整数的意义及计算方法。

4.想一想;整数除法也有类似的规律吗?

5.填一填,验证猜想。

1÷4 1×1/4

7÷37×1/3

三、反馈矫正落实双基

1.出示26页试一试。

2.指导完成26页练一练的1~3题。

四、小结评价布置预习

1.引导小结

(1)这节课我们学习了什么知识?

(2)还有什么问题?

2.布置预习:27~28分数除法(二)

板书设计:

分数除法(一)

4/7÷2=4/7×1/2=2/7

4/7÷3=4/7×1/3=4/21

分数除以整数的意义,与整数除法的意义相同。

计算法则:分数除以整数(零除外),等于乘这个整数的倒数

小学数学分数教案模板篇3

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

小学数学分数教案模板篇4

教材分析:

这部分内容是在学生已学习百分数的意义,明确了百分数和分数、小数的联系的基础上进行教学的。由于百分数的计算通常是化成分数、小数来进行,而求百分率,又要把计算的结果化成百分数,所以学好这部分内容就为后面学习百分数的计算和应用打下基础。

学情分析:

由于百分数、小数、分数这三者之间有着密切的联系,所以学生对百分数与小数之间的互化不难掌握,学生可以利用自己原有的知识思考怎样互化,再归纳出互化的方法。

教学目标:

知识与技能

学会百分数与小数互化的方法;能正确地较熟练地进行百分数与小数的互化。

过程与方法

通过自学、讨论与交流等学习活动,理解百分数与小数互化的方法。

情感态度与价值观

积极参与百分数与小数互化的学习活动,体验互化方法的多样性,并获得成功体验。

教学重点:

理解百分数与小数互化方法。

教学难点:

在学生掌握百分数与小数基本转化规律的基础上,如何引导学生通过观察分析、概括,掌握它们互化的简便方法。

教学方法:

合作学习法。

教学流程:

一、复习引入

1、师:上节课我们研究了分数的意义和写法,你能说几个百分数吗?谁能联系生活实际说几个百分数?

2、把下面各数改写成百分数。

3、把下面的分数化成小数,小数化成分数。

0.45=1.2=0.6=

二、导入新课

根据分数与小数化成互化关系,请同学们猜测一下,百分数与小数也能互化吗?是的,百分数与小数也能互化。在生产生活中,为了简便,经常需要把小数或分数化成百分数,或者把百分数化成小数或分数。这节课我们就探究百分数和小数的互化方法,并能正确熟练的进行互化。(板书课题:百分数和小数的互化)探索新知。

1、认真阅读课本80。

例1:小数化百分数认真看书观察每一步转化的过程,重点看1.4和0.123每一步的过程。然后学生交流改写结果。注意让学生说说方法,如:是怎样把一位小数1.4改写成百分数的?1.4是一位小数,写成分母是100的分数时,小数的位数不够你是怎么处理的?改写的依据是什么?

2、总结方法。

师:除了把小数转化为分数再转化为百分数的方法外,你还有更快捷的方法吗?学生组内交流,明确结论:把小数改写成百分数,只要把小数点向右移动两位,同时在后面添上百分号。小数点向右移2位,添上%(同时板书:小数百分数)

3、填空:小数化百分数,先把小数转化成()数,再把分数转化成分。

4、把小数化成百分数、0.45=0.60.125=2.5=指名学生板演,并说说化的方法。重点弄清每一步为什么要这样做。让学生进一步观察算式看从小数到百分数的转化小数点是如何变化的?为什么?练习:书上第80

5、认真看课本80页自学。

例2:百分数化为小数。

6、如果反过来把百分数直接改写成小数,又是怎样的呢?你还能说说吗?小组合作交流得出:把百分数改写成小数,只要去掉百分号,同时把小数点向左移动两位)

7、出示例2:把27%、135%化成小数。

师:请学生从右往左观察例1中三个例子,想一想把百分数化成小数应该怎样做?请同学们试一试。(学生板演)让学生用一般的方法转化后汇报。

师:观察百分数数和化成的小数,想一想怎样能很快地把百分数化成小数?并让学生说说怎样移动小数点?教师进行评价,引导验证规律。去掉%,小数点向左移2(同时板书百分数小数)

8、把百分数化成小数12%180%=指名学生板演,并说说化的方法。重点弄清每一步为什么要这样做。让学生进一步观察算式看从百分数到小数的转化小数点是如何变化的?为什么?练习:书上80

三、课时小结

向大家介绍一下今天你掌握了什么新知识?学得轻松吗?是用什么方法学的?

四、作业

完成相应的练习册。

小学数学分数教案模板篇5

教学内容:

教材第29-30页的内容。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。

2.探索并掌握分数除以整数的计算方法,并能正确计算。

3.能够运用分数除以整数解决简单的实际问题。

教学重点:

分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。

教学难点:

运用分数除以整数解决简单的实际问题。

教具准备:

多媒体课件

预习提纲:

1.观察课本第29页的图,从中你能获得哪些数学信息呢?

2.根据这些数学信息你能提出哪些问题?

3.分析例题,写出等量关系,并试用方程解答。

4.想想还有别的算法吗?

教学过程:

一、创设情境,引发探究

1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?

2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?

(1)打篮球的`人数是踢足球的4/9.

(2)踢毽子的人数是踢足球的1/3.

(3)跳绳的人数是参加活动总人数的2/9.

……

二、提出问题,自主探究

1.根据这些数学信息你能提出哪些问题?

操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?

列出这题的等量关系,并解答。全班交流。

2.还能提出哪些数学问题,引出例题

跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?

这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?

你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。

解:设操场上有x人参加活动。

χ×2/9=6

χ×2/9÷2/9=6÷2/9

χ×=27

3.想一想,还有别的算法吗?怎么算?为什么?

6÷2/9=27(人)

三、巩固练习,实践探究

刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?

1.操场上打篮球的有4人。

(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?

(2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?

(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?

(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。

2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?

(板演过程中,着重分析学生可能存在的误解之处。)

3.根据以下方程,编出相应的应用题。

χ×1/5=30 χ×2/3=40

四、回顾反思,总结全课。

通过这节课的学习你有哪些收获?