教案是教师为了提高上课质量事前撰写的教学文书,教师在写教案时,一定都保持着思维清晰,下面是范文社小编为您分享的糖三角教案6篇,感谢您的参阅。
糖三角教案篇1
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
?教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知 引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
?设计意图:也自然导入新课。】
二、提出问题 引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
?设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证 形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的.个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:
?标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】
四、应用结论 解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测: 三角形的内角和是180°?
验证: 量 拼
结论: 任意三角形的内角和是180°
糖三角教案篇2
教学目标
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
教学重难点
三角形的内角和
课前准备
电脑课件、学具卡片
教学活动
一、计算三角尺三个内角的和。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
二、自主探索,解决问题
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上
任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以
计算的结果为准。
四、巩固提高
完成想想做做的题目。
第1题
学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。
第2题
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。
第3题
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
第4、5、6
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
糖三角教案篇3
教学目标
⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与
教师活动:学生活动媒体应用设计意图
目标达成
导入新课
一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?
我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠a、∠b、∠c来表示。
什么是三角形的内角和?
三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠a、∠b、∠c的式子来表示应该如何写?∠a+∠b+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)
由三角形的内角引出三角形的内角和,“∠a+∠b+∠c”的表示形式形象的体现出三内角求和的关系
二、动手操作,探究新知
1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数
把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?
我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3.学生测量
4.汇报的测量结果
除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°
5、巩固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?
环节
三、应用所学,解决问题。
1、基础练习(课本第68页做一做)
在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。
2、判断题
(1)大三角形的内角和大于180度。()
(2)三角形的内角和可能是180度。()
(3)一个三角形中最多只能有一个直角。()
(4)三角形的三个内角分别可能是30度,60度,70度。()
3、求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。
四、总结:这节课你有什么收获?
糖三角教案篇4
活动设计背景
幼儿的天性是好动,观察能力、模仿能力特别强。利用生活中的图形来激发幼儿的好奇心和学习兴趣。还培养幼儿的动手能力。
活动目标
一.通过幼儿亲自动手操作活动认识圆形、三角形。
二.培养幼儿的动手能力,发展幼儿的观察力和积极思维的能力。
三.培养幼儿的语言能力,丰富幼儿的词汇,锻炼幼儿的胆量。
教学重点、
培养幼儿的动手能力,发展幼儿的思维,提高幼儿的口语表达能力
活动准备
1每人一只小盒子 、四颗大小不同的纽扣,三根火柴棒,
2大头针若干、泡沫板一块、绒线或铜丝若干。
3圆形、三角形卡片、雪花玩具。
活动过程
一.开始部分:
1出示球、魔方、饼干、盆碗、纽扣让幼儿观察它们都是什么形状。如果知道告诉老师,小朋友认识那些图形。
2小朋友喜欢这些图形吗?
3今天我们就和这些图形做朋友。
二.基本部分
1玩纽扣吧,请小朋友把自己手中的纽扣从大到小地排列并数数有几颗纽扣?
2问这些纽扣都是什么形状的?并请小朋友把最大的纽扣拿出来,摸一摸,看一看。
3找圆形;纽扣是圆形,还有什么是圆形的?让幼儿在教室里找圆形,找到后告诉老师,要大声回答问题,(表、桶、球、水杯)。
4连三角形:请小朋友用三根大头针随便分开插在泡沫板上。教师用一根绒线把大头针连起来后让小朋友说出是一个什么图形?(三角形)。比一比三角形与圆形有什么不一样?(三角形有三条边三个角)。
5让幼儿自己动手,拼三角形:请每个幼儿用三根火柴棒拼成一个三角形。
三.结束部分 :
1发给每个幼儿一根铜丝,让幼儿发挥想象任意摆出自己喜欢的图形,而且还要说出自己的想法,锻炼幼儿的手脑并用,语言表达能力。
2给雪花玩具归类:圆形的放在圆盒子里,三角形的放在的三角形盒子里。
3摆卡片;发给每个幼儿一套图形卡片,让他们有创意的摆出各种组合图形。
4欣赏图形,让幼儿自己来评价一下小朋友的作品。
5教师总结在课堂上全体小朋友的表现。
教学反思
我利用幼儿的好动好学的天性,让幼儿自己边学边边动手、边观察,在生活中找出各种图形,而且,锻炼幼儿说话、要大声说话,不仅要在科学常识方面学习,还要丰富幼儿的口语表达能力,并且利用幼儿动拼图形时,发展了幼儿思维能力,要想像出他所喜欢的图形才能拼出各种图形,幼儿特别喜欢用铜丝和图形卡片来拼图。就像变魔术一样。一会变成圆形、一会变成三角形又变成正方形,幼儿还用卡片组合拼图,用圆形和三角形组合成一只小鸟,三角形圆形正方向组成大象。幼儿特别有成就感。非常激动学习兴趣特别浓。
本节课幼儿的注意力特别集中,就连胆小幼儿都能拼出简单的图形。这说明幼儿很聪明,只要给他们搭建平台,他们就有机会展示自己,课堂上积极配合老师。如果,这节课从上的话,我要给幼儿一支笔,要让动手他们画出自己喜欢的图形,比如、电视、洗衣机、冰箱、球、车轮、等等
糖三角教案篇5
尊敬的各位评委老师:
大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
糖三角教案篇6
教学目标:
1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学准备:
多媒体课件、实物投影、小棒若干。
教学过程:
一、导入
1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?
(生:三角形)。
师:什么是三角形?
(生:由三条线段首尾相接围成的平面图行就是三角形。)
师:围成三角形的三条线段是三角形的什么?
(生:边。)
2、解释课题
今天咱们就来共同研究三角形的三条边之间有什么奥秘。
二、探究活动
1、用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的长度有关。
①师:刚才咱们说了“由三条线段首尾相接围成的平面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?
师:是不是只要给你3根小棒你就一定能围成一个三角形?
师:怎么验证咱们说得对不对呢?
(生:实际动手摆一摆、围一围。)
师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。
②课件出示“活动要求”。
学生自读活动要求,师:清楚活动要求了吗?开始吧!。
③学生动手摆一摆并完成活动记录表。
④汇报活动结果。
师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)
师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)
2、进一步探究怎样的3根小棒能摆成三角形。
①课件分别演示4组小棒摆三角形的过程。
②两根短小棒长度之后小于长小棒时摆不成三角形。
出示第3组小棒(2,3,6)。
师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)
师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)
师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)
师板书:2+3
师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)
师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?
归纳:两根短小棒长度之后小于长小棒时摆不成三角形。
③两根短小棒长度之后等于长小棒时摆不成三角形。
师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?
课件演示。
师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)
板书:3+3=6
师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?
师:那么怎样的3根小棒也摆不成三角形呢?
归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。
④小结
师:咱们能不能用一句话概括摆不成三角形的两种情况?
生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。
⑤探究怎样的3根小棒能摆成三角形。
师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?
生:两根短小棒长度之后大于长小棒时能摆成三角形。
师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。
学生算一算验证猜测。
师:那么怎样的3根小棒能摆成三角形?
归纳:两根短小棒长度之后大于长小棒时能摆成三角形。
3、进一步探究三角形边之间的关系
①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)
②师:请你算一算,比一比。
学生同桌两人交流。
个别学生汇报计算结果。
③师:那么三角形的三条边之间有什么关系?
学生思考。
④归纳总结
三角形任意两边之和大于第三边。(板书)
师:这就是三角形边之间的关系。刚才咱们是从这两个三角形发现的这个结论。现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。
(学生计算验证)
三、随堂练习
师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?
1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。
?三角形边的关系》教学设计
2、完成“练一练”1-3
四、布置作业
练一练。4
五、全课小结