二倍数教案8篇

时间:2022-11-06 作者:Trick 备课教案

我们在写教案的时候,一定要明确好自己的教学目标,教案在制订的时候,你们肯定要考虑联系实际,范文社小编今天就为您带来了二倍数教案8篇,相信一定会对你有所帮助。

二倍数教案8篇

二倍数教案篇1

教学目标

1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。

2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。

教学重难点

判断一个数是不是3的倍数。

课前准备

小黑板、学具卡片

教学活动

一、引入新课,激发兴趣

教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)

教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。

谈话:你们会想这是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快地判断出来,你们愿意来试一试吗?

学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。

谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)

二、自主探索。合作学习

1.先让学生猜一猜:3的倍数有什么特征?举例说明。

2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的倍数吗?

3.当学生得出3的倍数与个位上的数没有关系时,教师引导学生在小组里用计数器拨几个3的倍数,看每次用了几颗算珠?

如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+o+7+5—15。

4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?

:每个数所用算珠的颗数都是3的倍数。

5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。

:一个数是3的倍数,这个数各位上的数的和一定是3的倍数。

6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。

7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?

在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

三、运用结论。巩固拓展

1.做“想想做做”第1题。

指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?

2.做“想想做做”第2题。

提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。

3.做“想想做做”第3题。

让学生独立填写,再在小组里交流:你能找到几种不同的填法?

4.做“想想做做”第4题。

学生涂完后,指名回答:9的倍数都是3的倍数吗?

5.做“想想做做”第5题。

各自组数,并把组成的数记下来。

指名报答案,全班学生评议。

6.补充题。

提问:你今年几岁?再过几年你的岁数是3的倍数?

四、

二倍数教案篇2

一、学习目标

(一)学习内容

?义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。

(二)核心能力

在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。

(三)学习目标

1、借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。

2、在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。

(四)学习重点

探索3的倍数的特征。

(五)学习难点

归纳举证3的倍数的特征

(六)配套资源

百数表、计算器

二、教学设计

(一)课前设计

(1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。

(2)自制一张百数表。

(二)课堂设计

1、复习引入

师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?

学生自由发言,重点引导学生回忆知识形成的过程。

小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。

师:这节课我们来研究“3的倍数的特征”。(板书课题)

?设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】

2、问题探究

(1)找3的倍数

师:研究“3的倍数的特征”,你们准备怎样研究?

生自由发言。

师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?

(2)全班交流、讨论

①发现问题

学生展示圈好的百数表。

师:说说你们的发现?

预设:只看个位不行。

师:为什么不行?

横着看:个位上的数0—9都有,竖着看:个位上的数也是0—9都有。

②分析问题

师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?

学生自由发言,引导学生斜着看。

师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?

生独立观察、发现。

?设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】

③解决问题

师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)

小组合作交流后全班汇报。

(3)归纳3的倍数的特征

师:你们的发现和猜想是什么?

小组汇报,引导学生评价补充。

引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。

师:这个猜想对不对呢?你们是怎么验证这个猜想呢?

生汇报验证的过程。

师:举什么样的例子既简单又有代表性?

举的例子包含有两位数、三位数、四位数……,多举几个

师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。

师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?

归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

?设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】

3、巩固练习

(1)课本第11页“练习二的第3题”

圈出3的倍数。

92 75 36 206 65 3051 779 99999

111 49 165 5988 655 131 2222 7203

(2)课本第10页“做一做”

(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?

请说明理由。

先独立完成,然后同桌合作操作验证。

4、全课总结

师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?

在探究的过程中我们遇到了什么新问题?

小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。

师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。

二倍数教案篇3

教学内容:

苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。

教学目标:

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

教学重点:

认识因数和倍数。

教学难点:

求一个数的因数、倍数的方法。

教学准备:

小黑板、准备12个同样大的正方形学具。

教学过程:

一、操作引入,认识意义

1.操作交流。

引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。

交流:你有哪些拼法?请你说一说,并交流你表示的算式。

结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

2.认识意义。

(1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。

(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

(3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是o的自然数。

二倍数教案篇4

教学目标:

1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

2、培养分析、比较及综合概括能力。

3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

教学重点:

掌握3的倍数的特征,正确判断一个数是否是3的倍数。

教学难点:

探索3的倍数的特征。

教学过程:

一、【创设情景,明确目标】(3分钟)

(一)创设情景,反馈预习

1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

p:16、24、85、102、138、170、

2的倍数:16、24、102、138、170

5的倍数:85、170

即是2的倍数又是5的倍数:170

师:说一说,你是怎么想的?

生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

3、教师板书课题:3的倍数的特征。

(二)明确目标,引领方法

1、出示学习目标(见学案),生自读目标。

2、同伴说说自己的理解,谈谈如何实现目标。

?设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

二、【自主学习,同伴合作】(15分钟)

(一)自主学习,自我感知

1、小棒游戏,探究规律

师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

师:你来!

师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

学生摆出:51

师:51是3的倍数。我算的比计算器快吧?

师:能摆一个三位数吗?

学生摆出:312

师:312是3的倍数。

师:再来一个难点的。

学生摆出:1123

师:1123不是3的倍数。

师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

2、小组合作探究

(1)用3根小棒摆一个数,这些都是3的倍数吗?

师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。

小组内合理分工,请大家看一下导学案的合作要求

①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

②用计算器算一算,将3的倍数圈出来。

③仔细观察表格,从中你发现了什么?

(2)用4根再摆出一些数,这些都是3的倍数吗?

(3)用6根再摆出一些数,这些都是3的倍数吗?

(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

预设

第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

第三族,用6根小棒摆:都是3的倍数。

问题:你发现了什么?

生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

师评价:关键要看小棒的根数,了不起的发现。

生:只要小棒的根数是3的倍数,这个数就是3的倍数。

师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

生:9根、12根、15根……都行——

(5)真的是这么回事吗?以9为例摆摆看。

师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

生:我用9根小棒摆出了36,36是3的倍数。

师:哪个小组还想出三位数、四位数或是更大的数?

生:我用9根小棒摆出了216,216是3的倍数。

生:我用9根小棒摆出了3015,3015是3的倍数。

师:说得完吗?

生:说不完。

师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

生:很合理。

师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

3、总结提升

师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

师:小组内交流一下。

小组活动。

师:谁来说说?

生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

4、探究原因,区别理解

(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

研究16

师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

(2)问:为什么3的倍数特征要看各个数位相加的和呢?

举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

138分一分,试一试,看看是不是3的倍数

一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

(2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

p:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

三、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基??

1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、圈出下面是3的倍数的数:42、78、111、165、655、5988

3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

(预设:生1:1。

师:可以吗?还有其他答案吗?

生2:1,4,7都可以。

师:理由呢?

生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

师:恭喜你,三种可能都被你们猜中了!

师:如果它既是2的倍数,又是3的倍数呢?

生:24。

师:为什么只有24可以呢?

生:因为只有24既是2的倍数,又是3的倍数。)

(二)拓展训练,灵活创新

以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(ppt)

13689362754、123456789

老师:如果用各个数位之和是3的倍数,比较麻烦。

但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

教师巡视,个别辅导。

(二)同伴讨论,互助共进

完成学案中“同伴合作,互助共进”内容。

重点交流学生所举的例子。

教师巡视,个别辅导。

?设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

四、【师生共学,交流分享】(5分钟)

(一)小组展示,彰显风采

指名小组进行汇报。

(二)师生完善,共同提高

1、学生纠正、补充、质疑

2、教师精讲、点拨、评价

在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

?设计意图】通过教师的点拨完善学生对比的认识。

五、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基??

先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的`倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、看一看哪些是3的倍数:42、78、111、165、655、5988

原来判断是用除法,现在用加法。改革了

3、不用计算,能快速算出来那个式子有余数吗?

802、3;342、3

4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?p:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

5、下面都是吗?789、345、654

都是,有什么特点?相邻、连续三个自然数。

是不是所有都是呢?举例:123.为什么呢?

654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

二倍数教案篇5

教学内容:

教材19页内容,能被3整除的数的特征。

教学要求:

使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

教学重点:能被3整除的数的特征。

教学难点:会判断一个数能否被3整除

教学方法:

三疑三探教学模式

教具学具:

课件等。

教学过程

一、设疑自探(10分钟)

(一)基本练习

1、能被2、5整除的数有什么特征?

2、能同时被2和5整除的数有什么特征?

(二)揭示课题

我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

(三)让学生根据课题提问题。

教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

(四)出示自探提示,组织学生自探。

自探提示:

自学课本19页内容,思考以下问题:

1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

2、能被2、3整除的数有什么特征?

3、能被2、3、5整除的数有什么特征?

二、解疑合探(15分钟)

1、检查自探效果。

按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

2、着重强调;

一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

三、质疑再探(4分钟)

1、学生质疑。

教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

四、运用拓展(11分钟)

(一)学生自编习题。

1、让学生根据本节所学知识,编一道习题。

2、展示学生高质量的自编习题,交流解答。

(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

1、判断下列各数能不能被3整除,为什么?

72 5679 518 90 1111 20373

2、58 115 207 210 45 1008

有因数3的数:( )

有因数2和3的数:( )

有因数3和5的数:( )

有因数2、3和5的数:( )

让学生说说怎么找的。

(三)全课总结。

1、学生谈学习收获。

教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

2、教师归纳总结。

学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

板书设计:

能被3整除的数的特征一个数各个数位上的数字之和能被3整除,

这个数就能被3整除。

二倍数教案篇6

教学目标:

1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。

教学重点:

掌握倍数和因数等相关概念,以及应用概念判断、推理。

教学难点:

理解相关概念的联系和区别。

教学过程:

一、揭示课题

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?

学生回顾,交流,教师适当引导回顾。

提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?

根据学生回答,板书整理。

2.做练习与实践第10题。

学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做练习与实践第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做练习与实践第12题。

学生先独立写出质数和合数,再指名口答。

追问:最小质数是几?最小的合数呢?

二倍数教案篇7

课题3的倍数的特征

课时 一课时

一、教材内容分析

?3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难。

二、教学目标(知识与技能、过程与方法、情感态度与价值观)

1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。

2、 使学生在学习过程中积累数学活动的经验,培养学生观察、分析、动手操作及概括问题的能力,发展学生的抽象思维和培养相互间的交流、合作与竞争意识,提高学生的合情推理能力。

3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

教学难点:3的倍数的数的特征的归纳过程。

三、学习者特征分析

学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

四、教学策略选择与设计

根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

1、创设情景,激趣导入。

2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

3、采用让学生自主发现的学习方法。

学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

六、教学过程

教学过程

一、猜想,激发兴趣

二、探究,验证猜想

三、练习,巩固结论

1、提问:你能用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?

2、 谈话:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,你能猜猜什么样的数是3的倍数?

3、提问:同意他的猜想吗?他猜的到底对不对呢?我们一起来研究一下。

四、总结,拓展延伸

1、课件出示百数表

(1)提问:请同学们观察一下,3的倍数个位上是哪些数字?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

(2)究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题:3的倍数的特征)

2、提问: 观察百数表中圈出的3的倍数,你们发现什么?

(1)引导学生先横着看,竖着看,仍然找不到3的倍数特征。

(2)引导学生斜着看:第一斜行3,12,21。

汇报交流:

①第一斜行3的倍数交换两个数字的位置后,得到的还是3的倍数。

②第一斜行3的倍数各位上数字相加,和是3的倍数。

(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

(4)将百数图中的数的顺序打乱,刚才大家发现的还正确吗?

3、操作验证

(1)在计数器上分别拨出几个3的倍数:12、42、45、75、87看看各用了几颗算珠?

小结:算珠的个数与3的倍数之间的联系。

(2)观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系?

教师板书:3的倍数,它各位上的和一定是3的倍数。

4、学生举例验证此规律在100以外的数是否适用。

5、运用结论,完成试一试。

五、课外作业:

课件出示:

1、下面的数,那些是3的倍数?

29 45 51 67 284 196 3456 760058947641587

组织交流:哪些数是3的倍数?你是怎样判断的?

2、在每个数的口里填上一个数字,使这个数是3的倍数。

7口 20口 口12 3口5

提问: 为什么填这个数?你是怎么想的?还可以填哪些数?

3、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

0 5 6 7

4、猜猜老师的年龄:老师的年龄既是2的倍数,又是5的倍数,又是3的倍数,老师今年( )岁。

5、看谁最聪明?

23663997是3的倍数吗?你是怎样判断的?

学生交流,汇报。

快速判断下列数是不是3的倍数?再用计算器验证前三个。

369639693、13693692、121212127、18275499、9233……3

总结:

当一个数的数位上出现3、6、9时,可以先去掉3、6、9,剩下的数的两个数和是3的倍数,再去掉,最后去掉三个数的和是3的倍数。余下的数是3的倍数。那么这个数就是3的倍数,不是则相反。

板书设计

33的倍数的特征

33的倍数,它各位上的和一定是3的倍数。

课后作业 研究6和9的倍数的特征。

二倍数教案篇8

教学内容:

北师大版数学五年级上册6—7页的内容。

教学目的:

1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。

2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。

3、通过探究3的倍数的特征的活动过程,让学生获得积极的情感体验,激发学习数学的兴趣

教学重点:

理解3的倍数的特征。

教学难点:

探索活动中,发现规律,并归纳出3的倍数的特征。

教具准备:

实物投影仪、数字卡片等。

学具准备:

每人几张数字卡片。

教学过程:

一、谈话导入,揭示课题。

我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。

板书课题:3的倍数的特征。

二、探索交流、获取新知。

(一)活动一:复习巩固。

1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?

2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)

3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)

(二)活动二:探索研究3的倍数的特征。

1、在书上第6页的表中,找出3的倍数,并做上记号。

(先独立完成,看谁找的快?)

2、观察3的倍数,你发现了什么?

教师参与到讨论学习中。

先独立思考,想出自己的想法。

然后与四人小组的同学说说你的发现。

生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。

生2:十位上的数也没有什么规律。

生3:将每个数的各个数字加起来试试看

3、你发现的规律对三位数成立吗?找几个数来检验一下。

(1)自己先找几个数试一试。

(2)然后在小组内说说你验证的结论。

(三)活动三:试一试

在下面数中圈出3的倍数。

28 45 53 87 36 65

(先自己圈,然后说说你是怎样判断的?)

(四)活动四:练一练

1、请将编号是3的倍数的气球涂上颜色。

36 17 54 71 45 48

(自己独立完成,在小组内说说自己的想法。)

2、选出两个数字组成一个两位数,分别满足下面的条件。

3 0 4 5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。

(独立完成,说说你的窍门和方法。)

(五)活动五:实践活动

在下表中找出9的倍数,并涂上颜色。

(可以在自主实践以后再交流。)

三、总结。

通过这节课的学习,你有什么收获?

板书设计:

课题:探索活动(二)3的倍数的特征

1、在下面数中圈出3的倍数。

28 45 53 87 36 65

2、选出两个数字组成一个两位数,分别满足下面的条件。

3 0 4 5

(1)是3的倍数。

(2)同时是2和3的倍数。

(3)同时是3和5的倍数。

(4)同时是2,3和5的倍数。