在写教案的时候,一定要保持理性的思考,只有这样才能将它写得更有意义,每个人在写教案的时候,都要注意过渡好每个教学环节,范文社小编今天就为您带来了优秀初中教案数学7篇,相信一定会对你有所帮助。
优秀初中教案数学篇1
1.掌握一元二次方程的根与系数的关系并会初步应用.
2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.
4.培养学生去发现规律的积极性及勇于探索的精神.
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.
一、复习引入
1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.
2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.
即:对于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1•x2=ca
(可以利用求根公式给出证明)
例1不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0(2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1.根与系数的关系.
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
四、作业布置
1.不解方程,写出下列方程的两根和与两根积.
(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0
(4)3x2+x+1=0
2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值
优秀初中教案数学篇2
教学目标:
1、知识与技能:
(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。
(2)能熟练进行有理数的减法法则。
2、过程与方法
通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。
重点、难点
1、重点:有理数减法法则及其应用。
2、难点:有理数减法法则的应用符号的改变。
教学过程:
一、创设情景,导入新课
1、有理数加法运算是怎样做的?(-5)+3=—3+(—5)=
—3+(+5)=
2、-(-2)=-[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高气温是-20c,最低气温是-100c,这天北京市的温差是多少?
导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)
二、合作交流,解读探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?
3、通过以上列式,你能发现减法运算与加法运算的关系吗?
(学生分组讨论,大胆发言,总结有理数的减法法则)
减去一个数等于加上这个数的相反数
教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?
三、应用迁移,巩固提高
1、p.24例1计算:
(1)0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、课内练习:p.241、2、3
3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。
四、总结反思
(1)有理数减法法则:减去一个数,等于加上这个数的相反数。
(2)有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。
五、作业
p.27习题1.4a组1、2、5、6
备选题
填空:比2小-9的数是。
а比а+2小。
若а小于0,е是非负数,则2а-3е0。
优秀初中教案数学篇3
一、教学目的
?知识与技能】
了解数轴的概念,能用数轴上的点准确地表示有理数。
?过程与方法】
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
?情感、态度与价值观】
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
?教学重点】
数轴的三要素,用数轴上的点表示有理数。
?教学难点】
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
优秀初中教案数学篇4
一、教材分析
(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。
(二)课时安排:
两课时。本节课是第一课时,第二课时是梯形的判定及应用
(三)教学目标
1、知识与技能目标:
掌握梯形的有关概念、等腰梯形的性质和五种基本辅助线。
2、过程与方法目标:
⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;
⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、
3、情感、态度与价值观目标:
让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;
(四)教学重点、难点:
本节课的教学重点分成三个层次:
1、掌握梯形的定义,认识梯形的其他相关概念;
2、熟练应用等腰梯形的性质;
3、通过实际操作研究梯形的基本辅助线作法。
本节课的教学难点确定为:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
为达成以上的教学目标,解决重点、突破难点,我的课堂教学设计的指导思想为:努力实现对传统课堂教学模式的五个突破——以学生主体观念突破教师中心、以学生主体活动突破课堂中心、以学生主体参与突破讲解中心、以学生主体经验突破书本中心、以学生主体能力发展突破考试中心。在这样的理念下,我设计了如下的教法、学法和教学程序:
二、教学方法:
根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法,实施“二、四、六”教学模式,即两个探究层次、四个教学环节、六步教学程序。如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。
三、学习方法:
初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的五步学习法、正如波利亚所说的:“学习任何知识的途径,都是自己去发现。”
四、教具、学具准备:
多媒体,小黑板,常用画图、剪纸工具,矩形纸片,平行四边形纸片,信纸
五、教学程序:
共有六步
(一)情境引发
(二)活动探索、研究发现
(三)深化建构
(四)迁移运用
(五)系统概括
(六)布置作业,拓展思维
这六步教学程序在教案中都详细介绍了,我只把教学的主线和总的设计意图说一说。
在前三个环节我都是以剪纸为主线:俗语说:良好的开端是成功的一半所以我先是利用平行四边形纸片剪梯形,然后是利用矩形纸片剪特殊梯形,再利用剪出的等腰梯形研究发现等腰梯形的性质,这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教”
在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。
由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。
设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点
在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题:
1、平行四边形和梯形的区别和联系;
2、我看等腰梯形的特殊性;
3、解决梯形的常用方法。
以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。
在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的
1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:
(1)等腰梯形
(2)直角梯形(要求:所拼成的图形互不重叠且不留空隙)
2、发挥想象,以梯形为基础图案设计通钢三中第__届运动会的会徽
我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、
六、有四点说明:
1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。
2、时间的大体安排:情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。
3、教学反思需要课后填写4、整个设计要突出体现的特色:让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教”。
七、教学预测:
本节课内容较多尤其是辅助线的几种作法在一课时内完成,有部分学生在探究问题的深度和广度上可能会有所欠缺。以上是我基于《梯形》在教材中的地位和初二学生的认知特点在新课程理念指导下作出的教学设计,敬请各位专家批评指正。
优秀初中教案数学篇5
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则a、b间距离为多少米?
2.长5米的梯子以倾斜角∠cab为30°靠在墙上,则a、b间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则a、b间距离为多少?
4.若长5米的梯子靠在墙上,使a、b间距为2米,则倾斜角∠cab为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点a1,a2,a3重合在一起,记作a,并使直角边ac1,ac2,ac3……落在同一条直线上,则斜边ab1,ab2,ab3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,b1c1∥b2c2∥b3c3……,∴△ab1c1∽△ab2c2∽△ab3c3∽……,∴
形中,∠a的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
优秀初中教案数学篇6
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
优秀初中教案数学篇7
教学目标
(一)教学知识点
1.利用方程解决实际问题.
2.训练用配方法解题的技能.
(二)能力训练要求
1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.
2.能根据具体问题的实际意义检验结果的合理性.
3.进一步训练利用配方法解题的技能.
通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.
教学重点
利用方程解决实际问题
教学难点
对于开放性问题的解决,即如何设计方案
教学方法
分组讨论法
教具准备
投影片二张
第一张:练习(记作投影片2.2.3a)
第二张:实际问题(记作投影片2.2.3b)
教学过程
Ⅰ.巧设情景问题,引入新课
[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3a)
用配方法解下列一元二次方程:
(1)x2+6x+8=0;
(2)x2-8x+15=0;
(3)x2-3x-7=0;
(4)3x2-8x+4=0;
(5)6x2-11x-10=0;
(6)2x2+21x-11=0.
[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、
(4)、(6).
[师]各组做完了没有?
[生齐声]做完了.
[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.
[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即
x-3x=7,
x2-3x+32=7+32应为(-23
2)2.
[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?
[生乙]方程(3)的解为x1=
[师]好,继续.3?237,x2?3?237.
[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=52,x2=-32.
[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即
方程(2)的解:x1=5,x2=3,
方程(4)的解:x1=2,x2=
方程(6)的解:xl=32,12,x2=-11.
[师]利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.
这节课我们就来解决一个实际问题.
Ⅱ.讲授新课
[师]看大屏幕.(出示投影片2.2.3b)在一块长16m,宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?
[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.
[生甲]我们组
的设计方案如右图
所示,其中花园四
周是小路,它们的
宽度都相等.
这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2m或12m.
[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.
[生乙]甲组的设计符合要求.
我们可以假设小路的宽度为xm,则根据题意,可得方程(16-2x)(12-2x)=1
2×16×12,
也就是x2-14x-24=0.
然后利用配方法来求解这个方程,即
x-14x=-24,
x2-14x+72=-24+72,
(x-7)=25,
x-7=±5,
即x-7=5,x-7=-5.
∴x1=12.x2=2.
因此,小路的宽度为2m或12m.
由以上所述知:甲组的设计方案符合要求.
[生丙]不对,因为荒地的宽度是12m,所以小路的宽度绝对不能为12m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2m.
[师]大家来作判断,谁说的合乎实际?
[生齐声]丙同学说得有理.
[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.
[生丁]我们组
的设计方案如右图.
我们是以矩形
的四个顶点为圆心,以约5.5m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.
因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为xm,根据题意,可得
πx2=22
1
2×12×16.
解得x=±96
?≈±5.5.
因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.
[生戊]由丁同
学组的启发,我又
设计了一个方案,
如右图.
以矩形的对角
线的交点为圆心,以5.5m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.
[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.
[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?
[生庚]我们组
设计的方案如右图.
顺次连结矩形
各边的中点,??
得到的四边形即
是作为花园的场
地.
因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24m2(即1
2×6×8),所以四
个直角三角形的面积之和为96m2,则剩下的面积也正好是96m2,即等于矩形面积的一半.因此这个设计方案也符合要求.
[生辛]我们组设计的方案如下图.
图中的阴影部分可作为建花园的场所.
因为阴影部分的面积为96m,正好是矩形面积的一半,所以这个设计也符合要求.
[生丑]我们组
设计的方案如右图.
图中的阴影部
分可作为建花园的
场地.
经计算,它符合要求.
[生癸]我们组的设计方案如下图.
2
图中的阴影部分是作为建花园的场地.
[师]噢,同学们能帮癸组求出图中的x吗?
[生]能,根据题意,可得方程
2×1
2(16-x)(12-x)
=1
2
2×16×12,即x-28x+96=0,
x2-28x=-96,
x2-28x+142=-96+142,
(x-14)2=100,
x-14=±10.
∴x1=24,x2=4.
因为矩形的长为16m,所以x1=24不符合题意.因此图中的x只能为4m.
[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.
接下来,我们再来看一个设计方案.
Ⅲ.课堂练习
(一)课本p55随堂练习1
1.小颖的设计方案如图所示,你能帮助她求出图中的x吗?
解:根据题意,得(16-x)(12-x)=
212×16×12,即x-28x+96=0.
解这个方程,得
x1=4,x2=24(舍去).
所以x=4.
(二)看课本p53~p54,然后小结.
Ⅳ.课时小结
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.
Ⅴ.课后作业
(一)课本p55习题2.51、2
(二)1.预习内容:p56~p57
2.预习提纲
如何推导一元二次方程的求根公式.