反比例教案7篇

时间:2022-12-06 作者:Iraqis 备课教案

教案的制定是为了让老师的课堂更丰富,为了活跃课堂,我们需要学会制定一份全面有效的教案,以下是范文社小编精心为您推荐的反比例教案7篇,供大家参考。

反比例教案7篇

反比例教案篇1

教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。

教学过程:

一、引入

教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

二、课堂练习

1.分析、研究第3题。

让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长宽=面积

= 长 =宽

提问:

当面积一定时,长和宽成什么比例关系?

当长一定时,面积和宽成什么比例关系?

当宽一定时,面积和长成什么比例关系?

教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。

2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。

运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系

3.第5题,让学生独立做,教师巡视,注意个别辅导。

4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。

5.第7题,学生独立解答后,选一题说说是怎样解的。

6.学有余力的学生做第8题。

反比例教案篇2

第一课时

教学设计思想

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

教学目标

知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重难点

重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教学方法

启发引导、合作探究

教学媒体

课件

教学过程设计

(一)创设问题情境,引入新课

[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

教学目标

(一)教学知识点

1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

(二)能力训练要求

结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。

(三)情感与价值观要求

结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用。

教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

教学难点

领会反比例函数的意义,理解反比例函数的概念。

教学方法

教师引导学生进行归纳。

教具准备

投影片两张

第一张:(记作§5.1a)

第二张:(记作§5.1b)

教学过程

Ⅰ。创设问题情境,引入新课

[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数。但是在现实生活中,并不是只有这两种类型的表达式。如从a地到b地的路程为1200km,某人开车要从a地到b地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

反比例教案篇3

教学目标:

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

教学重点:

结合图象分析总结出反比例函数的性质;

教学难点:描点画出反比例函数的图象

教学用具:直尺

教学方法:小组合作、探究式

教学过程:

1、从实际引出反比例函数的概念

我们在小学学过反比例关系.例如:当路程s一定时,时间t与速度v成反比例

即vt=s(s是常数);

当矩形面积s一定时,长a与宽b成反比例,即ab=s(s是常数)

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(s是常数)

(s是常数)

一般地,函数 (k是常数, )叫做反比例函数.

如上例,当路程s是常数时,时间t就是v的反比例函数.当矩形面积s是常数时,长a是宽b的反比例函数.

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

2、列表、描点画出反比例函数的图象

例1、画出反比例函数 与 的图象

解:列表

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.

3、观察图象,归纳、总结出反比例函数的性质

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

的讨论与此类似.

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

(2)函数 的图象,在每一个象限内,y随x的增大而减小;

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.

同样可以推出 的图象的性质.

(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.

函数 的图象性质的讨论与次类似.

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

5、布置作业 习题13.8 1-4

反比例教案篇4

教学内容:

成反比例的量。

教学目的:

使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。

教学重点、难点:

反比例的意义和正确判断成反比例的量。

教具准备:

小黑板、投影片。

教学过程

一、复习

1、口答正比例的意义。

2、怎样判断两种量成正比例?

3、写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

(1)已知每小时加工零件数和加工时间,求加工零件总数。

(2)已知每本书的价钱和购买的本数,求应付的钱。

(3)已知每公亩产量和公亩数,求总产量。

二、引新

在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)

三、新授

1、教学例4。

(1)出示例4。

引导学生观察上表内数据,然后回答下面的问题:

A、表中有哪两种量?这两种量相关联吗?为什么?

B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?

C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?

D、这个积表示什么?写出表示它们之间的数量关系式。

学生口答,师板书

小结:

2、教学例5

用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。

每本的页数152025304060

装订的本数40

(1)先填表,然后观察上表,回答下列问题:

表中有哪两种量?

装订的本数是怎样随着每本的页数变化而变化的?

表中相对应的每两个数的乘积各是多少?

你从中发现什么规律?写出它们的数量关系式?

学生回答,教师板书如下:

每本页数装订的本数=纸的总页数(一定)

(2)小结:

从上表可以看出:每本的页数和装订的本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。

(3)归纳反比例的意义及关系式。

(1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)

(2)判断成反比例量的方法:根据反比例的意义判断两种量是否面反比例的量要具备的条件:

a两种相关联的量。

b一种量变化,另一种也随着变化。

c两种量中相对应的两个数的积一定。

(3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)

(4)概括关系式。

如果用字母x和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:

xY=R(一定)

3.教学例6。

播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

师:大家能不能根据反比例的意义判断一下?

指名口述,师讲评。

(每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)

四、小结

判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。

讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?

五、巩固练习

课本第16页的做一做练后讲评。

六、课内外作业

完成练习三的第4――7题。

反比例教案篇5

教学目标:

1、通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

2、培养学生的逻辑思维能力

3、感知生活中的数学知识

重点难点

1、通过具体问题认识反比例的量。

2、掌握成反比例的量的变化规律及其 特征

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、课前预习

预习24---26页内容

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

二、展示与交流

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

情境(一)

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么共同点?

反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想

二、 反馈与检测

1、判断下面每题是否成反比例

(1)出油率一定,香油的质量与芝麻的质量。

(2)三角形的面积一定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积一定,底面积和高。

(6)小林做10道数学题,已做的题和没有做的题。

(7)长方形的长一定,面积和宽。

(8)平行四边形面积一定,底和高。

2、教材“练一练”p33第1题。

3、教材“练一练”p33第2题。

4、找一找生活中成反比例的例子,并与同伴交流。

板书设计: 反比例

两个相关联的量,乘积一定,成反比例

关系式:x×y=k(一定)

课后反思:

本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。

反比例教案篇6

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.

教学重难点

理解正反比例的意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时):路程(千米)

1:90

2:180

3:270

4:360

5:450

6:540

7:630

8:720

1.写出路程和时间的比并计算比值.

(1)2表示什么?180呢?比值呢?

(2)这个比值表示什么意义?

(3)360比5可以吗?为什么?

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

反比例教案篇7

教学目标

(一)教学知识点

1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.

2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

(二)能力训练要求

结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.

(三)情感与价值观要求

结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

教学难点

领会反比例函数的意义,理解反比例函数的概念.

教学方法

教师引导学生进行归纳.

教具准备

投影片两张

第一张:(记作5.1a)

第二张:(记作5.1b)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b,其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式,如从a地到b地的路程为1200km,某人开车要从a地到b地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t=中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

Ⅱ.新课讲解

[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?

1.复习函数的定义

[师]大家还记得函数的定义吗?

[生]记得.

在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.

[师]大家能举出实例吗?

[生]可以.

例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.

等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.

[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.

[师]请看下面的问题.

电流i,电阻r,电压u之间满足关系式u=ir,当u=220v时.

(1)你能用含有r的代数式表示i吗?

(2)利用写出的关系式完成下表:

r/Ω20406080100

i/a

当r越来越大时,i怎样变化?当r越来越小呢?

(3)变量i是r的函数吗?为什么?

请大家交流后回答.

[生](1)能用含有r的代数式表示i.

由ir=220,得i=.

(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.

从表格中的数据可知,当电阻r越来越大时,电流i越来越小;当r越来越小时,i越来越大。

(3)变量i是r的函数.

由ir=220得i=x,当给定一个r的值时,相应地就确定了一个i值,因此i是r的函数.

[师]这位同学回答的非常精彩,下面大家再思考一个问题.

舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.

[生]根据i=,当r变大时,i变小,灯光较暗;当r变小时,i变大,灯光较亮.所以通过改变电阻r的大小来控制电流i的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.

投影片:(5.1a)

京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.

[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.

[师]从上面的两个例题得出关系式

i=和t=

它们是函数吗?它们是正比例函数吗?是一次函数吗?

[生]因为给定一个r的值,相应地就确定了一个i的值,所以i是r的函数;同理可知t是v的函数,但是从表达式来看,它们既不是正比例函数,也不是一次函数.

[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?

[生]可以.由i=与t=可知关系式为y=(k为常数且k≠0).

[师]很好.

一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.

从y=中可知x作为分母,所以x不能为零.

3.做一做

投影片(5.1b)

1.一个矩形的面积为20cm2,相邻的两条边长分别为xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

3.y是x的反比例函数,下表给出了x与y的一些值:

x-2-1

13

y

2-1

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表.

[生]由面积等于长乘以宽可得xy=20,则有y=x,变量y是变量x的函数,因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数。

[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=x,给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=符合反比例函数的形式,所以是反比例函数。

[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件。同理,在求反比例函数的表达式时,实际上是要确定k的值,因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察,由x=-1,y=2确定k的值,然后再根据求出的表达式分别计算x或y的值。

[生]设反比例函数的表达式为

y=.

(1)当x=-1时,y=2;

∴k=-2.

∴表达式为y=-.

(2)当x=-2时,y=1.

当x=-时,y=4;

当x=时,y=-4;

当x=1时,y=-2.

当x=3时,y=-;

当y=时,x=-3;

当y=-1时,x=2.

因此表格中从左到右应填

-3,1,4,-4,-2,2,-.

Ⅲ.课堂练习

随堂练习(p131)

Ⅳ.课时小结

本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.

Ⅴ.课后作业

习题5.1

Ⅵ.活动与探究

已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?

分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1==k(x+2),由x=1、y=4确定k的值.从而求出表达式.

解:由题意可知y-1==k(x+2).

当x=1时,y=4.

所以3k=4-1,

k=1.

即表达式为y-1=x+2,

y=x+3.

由上可知y是x的一次函数。