式与方程的教案8篇

时间:2023-04-08 作者:Indulgence 备课教案

教案是老师为了顺利开展教学提早完成的书面表达,只有认真制定教案,我们的教学能力才会大大提高,以下是范文社小编精心为您推荐的式与方程的教案8篇,供大家参考。

式与方程的教案8篇

式与方程的教案篇1

教学目标:

1、 使学生会列一元一次方程解有关应用题。

2、 培养学生分析解决实际问题的能力。

复习引入:

1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:

(1)__________ (2)_________ (3)_________

人们常规定工程问题中的工作总量为______。

2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。

讲授新课:

1、例题讲解:

一件工作,甲单独做20小时完成,乙单独做12小时完成。

问:甲乙合做,需几小时完成这件工作?

(1)首先由一名至两名学生阅读题目。

(2)引导

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3)由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

2、练习:

有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?

此题的处理方法:

Ⅰ:先由一名学生阅读题目;

Ⅱ:然后由两名学生板演;

3、变式练习:

丙管改为排水管,且单独开丙管18分钟可把满池的水放完,问三管齐开,几分钟可注满空水池?要求学生口头列出方程。

4、继续讲解例题

一件工作,甲单独做20小时完成,乙单独做12小时完成。

若甲先单独做4小时,剩下的部分由甲、乙合做,问:还需几小时完成?

(1) 先由学生阅读题目

(2) 引导:

Ⅰ:这道题目的已知条件是什么?

Ⅱ:这道题目要求什么问题?

Ⅲ:这道题目的相等关系是什么?

(3) 由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。

5、练习:

(1)一件工作,甲单独做20小时完成,乙单独做12小时完成。

若乙先做2小时,然后由甲、乙合做,问还需几小时完成?

(2)一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?

以上两题的处理方法:

Ⅰ:先由两名学生阅读题目;

Ⅱ:然后由两名学生板演;

Ⅲ:其他学生任选一题完成。

Ⅴ:评讲后对第一题提出:这项工程共需几天完成?

Ⅵ:第一题还可根据什么等量关系列出方程呢?根据此相等关系列出方程(学生口答)。

6、编应用题:

(1) 根据方程:3/12+x/12+x/6=1,编应用题。

(2) 事由:打一份稿件。

条件:现在甲、乙两名打字员,若甲单独打这份稿件需6小时打完,若乙单独打这份稿件需12小时打完。

要求:甲、乙两名打字员都要参与打字,并且要打完这份稿件。

处理方法:由学生编出应用题,并设出未知数,列出方程。

课堂总结:工程问题中的三个量的关系。

课堂作业:见作业本

选做题:一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?

式与方程的教案篇2

教学内容:

第8页第5-10题

教学目标:

1、进一步理解并掌握如ax±b=c、ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯;获得一些成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

教学重点、难点:

经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

教学对策:

提供基本题和拓展题,让不同程度的学生在原有基础上得到不同的发展。

教学准备:

投影片或小黑板

教学过程:

一、基本练习

1、解方程。

8.2x-7.4=9 2x+52x=162

32+6x=50 10.5x-7.5x=0.9

学生独立解答,投影四位学生的解题过程,教师及时讲评,学生集体订正。

2、看图列方程并求出x。(第8页第5题)

(图略)学生独立思考后列方程解答,然后交流,同桌之间互相检查解题情况,互相评价。

3、列方程解决实际问题。(第8页第6-10题)

(1)第6题。

学生独立思考数量关系列出方程,组织学生交流自己的思考过程,教师及时评价。

(2)第7、8、10题。

学生独立思考并列出方程,指名学生说说数量关系和列出的方程,教师及时评价。

将第7、8、10题与第6题进行比较,请学生说说两题的分析和解题过程有什么不同。

(3)第9题。

提问:根据题中提供的信息,你想到了哪些数量关系?你觉得用什么方法解决这个问题较简便?

鼓励学生用不同的方法来解决这一问题,然后请学生交流自己的想法,让学生感受方程的思想方法及价值。

二、拓展练习

1、小明的储蓄罐里一共有87.5元,都是1元和5角的硬币。如果1元硬币的枚数是5角硬币的3倍。1元和5角的硬币各有多少枚?

学生认真读题后思考题中的数量关系,请学生交流。

在理解数量关系后组织学生正确列出方程并解答。

教师巡视学生练习情况,结合学生实际及时讲评。

2、甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是甲队的2倍。问甲、乙两队原有汽车各多少辆?

启发学生:两个车队的汽车总数没有发生变化,因此数量关系式为:甲车队汽车辆数+乙车队汽车辆数=180辆,然后再思考怎样用含有字母的式子来表示这两个未知的数量。

学生独立解答后组织交流,教师及时评价学生交流情况。

3、书上第8页的“思考题”。

在学生认真读题的基础上,教师引导学生理解“取了若干次后,红球正好取完,白球还有10个”,说明取出的红球比白球多10个。根据这样的数量关系来列出方程,解决本题。

三、全课总结

同桌之间互相检查本课练习情况,互相评价学习情况,再请几位学生全班交流。

四、布置作业

第8页第5、6、8、9题。

课后反思:

今天的练习课中,我主要借助教材上提供的一些实际问题和补充了一些练习题,想通过这些练习,帮助学生进一步提高分析数量关系的能力,能正确、熟练地运用列方程的方法来解决一些实际问题。我还参考了同一年级两位老师的“课前思考”,在课中根据学生实际情况对教学活动稍做调整,适当降低了练习难度,尽可能考虑到全体学生的发展。

练习课上,我也选用了高教导设计的一组有关行程问题的对比题,课中注意了对数量关系的分析,给学生较多的时间来思考、分析和交流。课堂上学习效果还不错,所以,我将教材上第8页的第5、6、7、8题作为课内作业,让学生独立完成。批完两个班学生的作业后,我发现自己对学生学习情况还没有摸透,特别是这学期刚接手的六二班。六二班中有接近1/3的学生在列方程解第5题时出现错误,分析错误原因主要是对于三角形面积计算公式和长方形周长计算公式已遗忘,列出错误的方程,因而造成错误,另一原因是在解这两个稍复杂的方程时,有些学生解方程有困难,胡乱计算。这两题虽然是有关几何图形面积和周长的计算,但由于数量关系式的不同,也可以列出不同的方程。而且有些方程可能较简单,更便于解答。看来,这一题还得重视起来,明天的'练习课上,我要再组织学生来解答,更好地掌握用列方程的方法来解决有关几何图形的问题。

式与方程的教案篇3

一.教学目标:

1.认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2.能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3.情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二.教学重难点

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三.教学过程

(一)创设情景,引入课题

1.本班共有40人,请问能确定男女生各几人吗?为什么?

(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

(2)这是什么方程?根据什么?

2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少?

3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4.点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

(二)探究新知,练习巩固

1.二元一次方程组的概念

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)

2.二元一次方程组的解的概念

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

方程x+y=0的解,方程2x+3y=2的解,方程组的解。

(3)既满足第一个方程也满足第二个方程的`解叫作二元一次方程组的解。

(4)练习:已知是方程组的解,求a,b的值。

(三)合作探索,尝试求解

现在我们一起来探索如何寻找方程组的解呢?

1.已知两个整数x,y,试找出方程组的解.

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

3.例 已知方程3x+2y=10

⑴当x=2时,求所对应的y 的值;

⑵取一个你自己喜欢的数作为x的值,求所对应的y的值;

⑶用含x的代数式表示y;

⑷用含y 的代数式表示x;

⑸当x=-2,0 时,所对应的y值是多少;

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

(四)课堂小结,布置作业

1.这节课学哪些知识和方法?

2.你还有什么问题或想法需要和大家交流?

3.教材p82

教学设计说明:

1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

式与方程的教案篇4

二元一次方程

§11.1 二元一次方程

【教学目标】

?知识目标】

了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

?能力目标】

通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

?情感目标】

通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

【重点】

二元一次方程组的含义

【难点】

判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

【教学过程】

一、引入、实物投影

1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?

2、请每个学习小组讨论(讨论2分钟,然后发言)

这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:x+1=2(y-1)

师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少? (含有两个未知数,并且所含未知数项的次数是1)

师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次

练习(投影)

下列方程有哪些是二元一次方程

+2y=1 xy+x=1 3x-=5 x2-2=3x

xy=1 2x(y+1)=c 2x-y=1 x+y=0

二、议一议、

师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?

师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成

x-y=2

x+1=2(y-1)

像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

如: 2x+3y=3 5x+3y=8

x-3y=0 x+y=8

三、做一做、

1、 x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?

2、 x=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?

你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?

x=6,y=2是方程x+y=8的一个解,记作 x=6 同样, x=5

y=2 y=3

也是方程x+y=8的一个解,同时 x=5 又是方程5x+3y=34的一个解,

y=3

四、随堂练习(p103)

五、小结:

1、 含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。

2、 二元一次方程的解是一个互相关联的两个数值,它有无数个解。

3、 含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。

六、教后感:

七、自备部分

式与方程的教案篇5

教学目标:

1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

2、会用方程表示简单的等量关系,会列方程解决简单问题。

3、感受式与方程在解决问题中的价值,培养初步的代数思想。

教学重点:

明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

教学难点:

找等量关系式,用方程解决实际问题。

教学过程:

一、导入

我们都记得这首儿歌

一只青蛙一张嘴,两只眼睛四条腿;

两只青蛙两张嘴,四只眼睛八条腿;

请你来接下句

三只青蛙_________;

五只青蛙呢?

n只青蛙呢?

一首小小的儿歌展示了数学的机智和趣味,细心的同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

二、进行复习

1、用字母表示数

(1)同学们想一想,在数学中有哪些地方常用字母来表示?

生列举:数量关系(路程、速度、时间 即s=vt)

计算公式(长方形面积计算公式:s=ab 圆柱的体积公式:v=sh 等)

运算定律(加法结合律:a+b+c=a+(b+c)等)

(2)请同桌之间相互举两个这样的例子。

(3)你们知道为什么用字母表示数吗?

(4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

(5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

算法有两种:其一:算术方法:160÷(5+3)=20

依据:总插秧数量÷时间=单位时间量

其二:列方程:x(5+3)=160

依据:单位时间量×时间=总插秧数量

观察比较:以上两种解法有哪些相同点和不同点?

相同点:都是根据数量间的相等关系列式。

不同点:解法一:以已知推出未知,是算术法。

解法二:把未知数用x表示,列出含有未知数的等式,即方程。

同学们想一想,等式和方程有什么联系和区别?

方程有哪些性质呢?(等式 、含有未知数)

2、方程

(1)判断下列哪些是方程(说明理由)

7+8=3×5 4a+5b a+12=89

4x=y 3+100>25+y 6+x=0.5×3

(2)你会解方程吗?从中选择一个试一试。

(3)如何判断方程的解是否正确?

(4)列方程解应用题的解题步骤是怎样的?

讨论后得出:①弄清题意,找出未知数,并用x表示;

②找出应用题中数量之间的相等关系,列方程;

③解方程;

④检验,写出答案。

3、列方程解决问题

(1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

(2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

(3)练习

①练一练1

②师展示习题:说出下面每组数量之间的相等关系。

(1)女生人数,男生人数,全班人数;

(2)苹果的重量,梨的重量,梨比苹果少的重量。

(3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

(4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

③课本练一练5

三、小结

说一说你今天的收获在哪里?

式与方程的教案篇6

教学目标

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点

把方程组变形后用加减法消元。

教学难点

根据方程组特点对方程组变形。

教学过程

一、复习引入

用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

三、练习。

1.p40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?

五、作业。

p33.习题2.2a组第2题(3)~(6)。

b组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:

2.3二元一次方程组的应用(1)

式与方程的教案篇7

教学内容:

p53--54练习十一1,2,3

教学目标:

1. 通过观察天平演示,使学生初步理解方程的意义;

2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;

3. 培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

判断一个式子是不是方程;初步理解方程的意义。

课前准备:

课件,习题板

教学过程:

一、复习旧知,激趣导入

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、出示学习目标

1、初步理解方程的意义,会判断一个式子是否是方程

2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

三、学习过程。

(一)认识天平

(二)新课学习

自学指导(一)。

自学p53, 分别说一说图1,图2,,显示的信息。

图1天平两边平衡,一个空杯重100克。

图2在空杯里加一杯水后天平不平衡了。

自学指导(二)

再看图3说说图3 显示的信息。

天平1杯子和里面的水比200克法码重

天平2杯子和里面的水比300克法码轻

自学指导(三)

请用算式表示图3数量关系。

天平1、100+x>200

天平2、100+x<300

自学指导(四)

再看图4说说图4 显示的信息,请用算式表示图4数量关系

100+x=250

自学指导(五)

观察比较下列算式说说你的发现

观察比较

100+x>200

100+x<300

100+x=250

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

课堂练习(一)

写出几个等式

自学指导(六)

请学生把这里的等式分类,并说说你们是如何分类的?

20+30=50

20+χ=100

50×2=100

14-8=6

3y=180

78× 3=234

100+2y=3×50

学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

教师总结:含有未知数的等式,称为方程。(板书)

课堂练习(二)

请大家写出几个方程。

四、小结:回答什么是方程?

式与方程的教案篇8

教学目标:

知识目标:

通过练习,使学生进一步理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。

能力目标:

培养学生分析问题、解答问题的能力。

态度、情感、价值观:

培养学生认真细致的学习习惯。

教学重点:

理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。

教学难点:

理解数量关系。

教学过程:

一、基本练习(5 分钟)

1.列方程

(1)某数的5 倍加上它的2 倍和是42,求这个数。

(2)x 的5 倍减去它的2 倍差是1.2,求x。

2.育民小学四五年级共植树600 棵,五年级植树是四年级的3 倍。两个年级各植树多少棵?

(1)画图,找等量关系。

(2)列方程解应用题。

二、层次练习(15 分钟)

1.育民小学四五年级同学植树,五年级植树是四年级的3 倍,五年级比四年级多植300 棵。四五年级各植多少棵?

(1)这道题与上题有哪些相同点和不同点?

(2)你会解答这道题吗?试做

(3)订正:

解:设四年级植x 棵,五年级植3x 棵。

3x-x=300

2x=300

x=150

3x=3150=450

答:四年级植150 棵,五年级植450 棵。

2.试一试:妈妈的年龄是女儿的4 倍,妈妈比女儿大27 岁,妈妈和女儿各多少岁?

学生独立做

3.小结:解答时,要抓住有倍的那句话设出未知数。看一看是求它们的和还是差,列出方程。

三、巩固练习(15 分钟)

1.看图列方程125 页3 题。

完成后交流

2.对比练习

(1)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,经过1.6 小时相遇。李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行多少千米?

(2)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,二人经过几小时相遇?

(3)张叔叔骑自行车,李叔叔骑摩托车。二人同时从两地出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,经过1.6 小时相遇。两地相距多少千米?

独立完成后交流。

四、总结交流(5 分钟)

说说你有什么收获?