针对以往教学中的不足,我们要学会在制定教案的时候,找到合适得解决措施,没有合理的思考,写出的教案就很难给课堂带来较高的活跃度,下面是范文社小编为您分享的方程的根教案5篇,感谢您的参阅。
方程的根教案篇1
设计说明
本节课的教学任务是使学生了解等式性质(二),并会用这个性质解方程。由于学生在探究等式性质(一)时已经具备了一定的学习经验,因此本节课的教学设计主要突出以下两点:
1、在操作实践中验证等式性质(二)
在教学中,通过学生的亲身实践,边操作边观察边总结,使等式性质(二)顺利地生成,同时让学生对此有直观的理解,强化学习效果。
2、通过直观图理解解方程的过程
在指导学生利用等式性质(二)解方程时,充分发挥了直观图的作用,加深学生对解方程的过程和依据的了解,提高学习效率。
课前准备
教师准备:
ppt课件
学生准备:
天平,若干个贴有标签的砝码
教学过程
猜想导入
师:谁能说出我们学过的等式性质?
[学生回顾上节课学习的内容,并汇报:等式两边同时加上(或减去)同一个数,等式仍然成立]
引导学生猜想:等式两边都乘同一个数(或除以同一个不为0的数),等式是否仍然成立呢?思考并在小组内交流自己的想法,然后汇报。
设计意图:学生已经学过了等式两边都加上(或减去)同一个数,等式仍然成立的性质。上课伊始,先复习所学知识,并由此进行合理猜想,再自然地引入新课,直奔主题。
动手验证,探究规律
师:大家的猜想对不对呢?我们来验证一下。
1、(课件演示,学生操作)天平左侧的砝码重x克,右侧放5克的砝码,这时天平的指针指向正中央,说明了什么?你知道左侧的砝码重多少克吗?怎样用等式表示?(说明天平平衡,左侧的砝码重5克,x=5)
2、如果左侧再加上2个x克的砝码,右侧再加上2个5克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,3x=3×5)
3、如果左侧有2个x克的砝码,右侧有2个10克的砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x=20)
4、如果左侧拿走一个x克的砝码,右侧拿走一个10克的`砝码,这时天平的指针指向正中央,说明了什么?你能写出一个等式吗?(说明天平平衡,2x÷2=20÷2)
5、通过上面的游戏,你发现了什么?
小结:等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
设计意图:利用课件的演示和动手操作,让学生体会天平两侧的变化情况,加深学生对等式的理解,体会等式的变化规律。
解方程
1、(课件出示教材70页方程:4y=2000)
师:你们能求出这个方程的解吗?
(学生先独立尝试,然后小组交流,并汇报)
预设
方法一:想?×4=2000,直接得出答案。
方法二:用等式性质解方程,方程的两边都除以4,从而得出答案。
师:为什么方程的两边都除以4,依据是什么?
预设
生:依据是等式的两边都乘同一个数(或除以同一个不为0的数),等式仍然成立。
让学生说出用等式性质解方程的过程。
方程的根教案篇2
数学《一元二次方程》教案??
一、教材分析
1、教材的地位和作用
一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。
2、教学目标及确立目标的依据
九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。
知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。
德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。
3、重点,难点及确定重难点的依据
“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。
二、教材处理
在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。
三、教学方法和学法
教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。
四、教学手段
采用投影仪
五、教学程序
1、新课导入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)
(2)列方程解应用题的方法,步骤?(并引例打基础)
课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)
设出求知数,列出代数式,并根据等量关系列出方程
数学《一元二次方程》教案3三
一、教学目标
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿, 建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
三、教学过程
(一)导入新课
师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?
生:老师,这是雷锋叔叔。
师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?
生:是的老师。
师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。
(二)新课教学
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用ac来表示上部,bc来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)
(三)小结作业
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
四、板书设计
五、教学反思
数学《一元二次方程》教案3二
教学目标
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。
(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本p6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.
方程的根教案篇3
(一)初步培养了学生平面解析几何的思想和一般方法。
在初中,学生熟知一次函数y=kx+b(也可以看成是二次方程)的图象是一条直线,但反过来任意画一条,要同学们写出方程表达式,学生刚开始会无从下手,从而激发学生学习的兴趣。随着教学的展开,让学生逐步形成平面解析几何的方法,如建立坐标啊,设点啊,建立关系式啊,得出方程啊等等,初步培养学生的平面解析几何思维,为后面学习圆、椭圆和相关圆锥曲线打下良好的基础。
(二)在教学中贯彻“精讲多练”的教学改革探索。
我们都知道,对于职中的学生,基础差,底子薄,理解能力差,动手能力差,要想让学生学有所得,最好的办法就是精讲多练,提高学生的动手能力。因此在教学中,我们通常是由练习引入,简单讲讲,一例一练,配以一定的巩固提高题,最后还有配套作业,做到每个内容经过三轮的'练习,让学生能够很容易的掌握。
(三)注意数形结合的教学。
解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在教学中要注意这种数学思想的教学。每一种直线方程的讲解都进行画图演示,让学生对每一种直线方程所需的条件根深蒂固,如点斜式一定要点和斜率;斜截式一定要斜率和在y轴上的截距;截距式一定要两个坐标轴上的截距等等。并在直线方程的相互转化过程中也配以图形(请参考一般方程的课件)
(四)注重直线方程的承前启后的作用。
教材承接了初中函数的图像之后,并作为研究曲线(圆、圆锥曲线)之前,以之来介绍平面解析几何的思想和一般方法,可见本节内容所处的重要地位,学好直线对以后的学习尤为重要, 事实上,教材在研究了直线的方程和讨论了直线的几何性质后,紧接着就以直线方程为基础,进一步讨论曲线与方程的一般概念。
方程的根教案篇4
教学内容:
义务教育人教版数学五年级上册67页内容。
教学目标:
知识目标:
1、通过演示操作理解天平平衡的原理。
2、初步理解方程的解和解方程的含义。
3、会检验一个具体的值是不是方程的解,掌握检验的格式。
能力目标:
1、提高学生的比较、分析的能力;
2、培养学生的合作交流的意识。
情感目标:
1、感受方程与现实生活的联系。
2、愿意与别人合作交流。
教学重点:
理解方程的解和解方程的含义,会检验方程的解。
教学难点:
利用天平平衡的原理来检验方程的解。
关键:
天平与方程的联系。
教具 :
课件
教学过程:
一、游戏铺垫,引出课题(出示课件)
师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!
师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。
生:从中你有什么想说的?或者你联想到了什么?
生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)
师过渡:是的,知识就是这样被有心人所发现的。
二、探究新知
师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)
再给你点信息,这幅图谁能用一个方程来表示。
生列方程,并说说你是怎么想的。
1、解方程
师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)
汇报预设:①因为9-3=6②因为6+3=9所以x的值为6 所以x的值为6 (多少)
师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。
师:现在我们就将x+3=9这个方程转换到天平上来?(黑板贴图)
师:球在天平不好摆,我们可以用方块来代替它。
自主尝试:看着天平,如何去寻求x的值?
请用笔记录下你的想法。
组织好语言上台汇报你的想法。
教师统一书写:
师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)
追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)
为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)
生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)
你学会了吗?赶紧和你的同桌说一说方法。
2、强调格式:
师:这个求解的过程和以前递等式有什么区别或相同的地方?
生:等号对齐;等号两边都要写;最前面要写解字
3、练习一:
师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解? 解:33+x○( )=65○( )
x=( ) 那么x-4.5=10 呢?(学生独立尝试,一个学生板演)
生完成填空和独立节解方程。(课件中校对)
4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,
叫“方程的解”;举例:x=3是方程x+3=9的解??
而求方程的解的过程,我们叫“解方程”(板书)
这些知识在数中有介绍,我们找到划一划读一读。(看书)
两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)
5、验算:
师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?
生:放进去计算一下。
师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。 生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。 生活动:尝试验算一个方程的解,另一个放心里代入验算。
6、小结
师:你学会了吗?你会解怎样的方程了?(含加法或减法)
解方程的步骤?(结合板书和课件)
生:解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。 c)求出x的值。
d)验算。
四、巩固练习
练习二:解方程比赛(书p67)
(1)100+x=250(2)x+12=31※(3) x -63=36
练习三:我是小法官:1.x=10是方程5+x=15的解( )。
2.x=10是方程x-5=15的解( )。
3. x=3是方程5x=15的解( )。
4.下面两位同学谁对谁错?
x-1.2=4 x+2.4=4.6
解:x-1.2+1.2=4-1.2=4.6-2.4
x=2.8 =2.2
师:谈谈你觉得解方程过程中有什么要提醒大家注意的?
生:注意等式性质的正确运用!注意解方程时的格式!
练习四:看图列方程并求解
五、课堂总结
师:我们这节课学习了什么?和大家来分享下!
板书设计:
解方程(含有加法或减法) 等式性质 解:x+3-3 =9-解方程 (过程)学生板演天平贴图
x=6 ?解 (值)检验:方程左边=x+3
=6+3
=9
=方程右边
所以,x=6是方程的解。
方程的根教案篇5
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点:一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的.次数是否是2。
4.一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本p6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.