数学定理的教案6篇

时间:2022-11-18 作者:Fallinlove 备课教案

我们在写教案的时候,一定要注意取材的内容是合理的,好的教案是教师成长的“催化剂”,以下是范文社小编精心为您推荐的数学定理的教案6篇,供大家参考。

数学定理的教案6篇

数学定理的教案篇1

一、利用勾股定理进行计算

1.求面积

例1:如图1,在等腰△abc中,腰长ab=10cm,底bc=16cm,试求这个三角形面积。

析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高ad,此时d也为底边的中点,这样在rt△abd中,由勾股定理得ad2=ab2-bd2=102-82=36,所以ad=6cm,所以这个三角形面积为×bc×ad=×16×6=48cm2。

2.求边长

例2:如图2,在△abc中,∠c=135?,bc=,ac=2,试求ab的长。

析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点b作bd⊥ac,交ac的延长线于d点,构成rt△cbd和rt△abd。在rt△cbd中,因为∠acb=135?,所以∠bcb=45?,所以bd=cd,由bc=,根据勾股定理得bd2+cd2=bc2,得bd=cd=1,所以ad=ac+cd=3。在rt△abd中,由勾股定理得ab2=ad2+bd2=32+12=10,所以ab=。

点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。

二、利用勾股定理的逆定理判断直角三角形

例3:已知a,b,c为△abc的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△abc的形状。

析解:由于所给条件是关于a,b,c的一个等式,要判断△abc的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△abc是直角三角形。

点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。

三、利用勾股定理说明线段平方和、差之间的关系

例4:如图3,在△abc中,∠c=90?,d是ac的中点,de⊥ab于e点,试说明:bc2=be2-ae2。

析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠c=∠bed=∠aed=90?及cd=ad,可连结bd来解决。因为∠c=90?,所以bd2=bc2+cd2。又de⊥ab,所以∠bed=∠aed=90?,在rt△bed中,有bd2=be2+de2。在rt△aed中,有ad2=de2+ae2。又d是ac的中点,所以ad=cd。故bc2+cd2=bc2+ad2=bc2+de2+ae2=be2+de2,所以be2=bc2+ae2,所以bc2=be2-ae2。

点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。

数学定理的教案篇2

课题:

勾股定理

课型:

新授课

课时安排:

1课时

教学目的:

一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

教学重点:

引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题

教学难点:

用面积法方法证明勾股定理

课前准备:

多媒体ppt,相关图片

教学过程:

(一)情境导入

1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

2、多媒体课件演示flash小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。

(二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

(三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。

(四)小结

1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。

2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?

(五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

数学定理的教案篇3

一、内容和内容解析

1。内容

应用勾股定理及勾股定理的逆定理解决实际问题。

2。内容解析

运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

二、目标和目标解析

1。目标

(1)灵活应用勾股定理及逆定理解决实际问题。

(2)进一步加深性质定理与判定定理之间关系的认识。

2。目标解析

达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

三、教学问题诊断分析

对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

四、教学过程设计

1。复习反思,引出课题

问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

追问:你能用勾股定理及逆定理解决哪些问题?

师生活动:学生通过思考举手回答,教师板书课题。

?设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

2。 点击范例,以练促思

问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

追问2:你能根据题意画出图形吗?

师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠qpr的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

解:根据题意,

因为

,即

,所以

由“远航”号沿东北方向航行可知

?因此

,即“海天”号沿西北方向航行。

课堂练习1。 课本33页练习第3题。

课堂练习2。 在

港有甲、乙两艘渔船,若甲船沿北偏东

方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

岛,乙船到达

岛,且

岛与

岛相距17海里,你能知道乙船沿哪个方向航行吗?

?设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

3。 补充训练,巩固新知

问题3 实验中学有一块四边形的空地

若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

?设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

4。 反思小结,观点提炼

教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

(1)知识总结:勾股定理以及逆定理的实际应用;

(2)方法归纳:数学建模的思想。

?设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

5。布置作业

教科书34页习题17。2第3题,第4题,第5题,第6题。

五、目标检测设计

1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

a。南北 b。东西 c。东北 d。西北

?设计意图】考查运用勾股定理的逆定理解决实际生活问题。

2。甲、乙两船同时从

港出发,甲船沿北偏东

的方向,以每小时9海里的速度向

岛驶去,乙船沿另一个方向,以每小时12海里的速度向

岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

两岛相距45海里,那么乙船航行的方向是南偏东多少度?

?设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

3。如图是一块四边形的菜地,已知

求这块菜地的面积。

?设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

数学定理的教案篇4

[教学分析]

勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]

一、 知识与技能

1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

2、应用勾股定理解决简单的实际问题

3学会简单的合情推理与数学说理

二、 过程与方法

引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、 情感与态度目标

通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、 重点与难点

1、探索和证明勾股定理

2熟练运用勾股定理

[教学过程]

一、创设情景,揭示课题

1、教师展示图片并介绍第一情景

以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

2、教师展示图片并介绍第二情景

毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

二、师生协作,探究问题

1、现在请你也动手数一下格子,你能有什么发现吗?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

3、你能得到什么结论吗?

三、得出命题

勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

四、勾股定理的证明

赵爽弦图的证法(图2)

第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

五、应用举例,拓展训练,巩固反馈。

勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

七、讨论交流

让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

数学定理的教案篇5

一、教学目标

1.灵活应用勾股定理及逆定理解决实际问题.

2.进一步加深性质定理与判定定理之间关系的认识.

二、重点、难点

1.重点:灵活应用勾股定理及逆定理解决实际问题.

2.难点:灵活应用勾股定理及逆定理解决实际问题.

3.难点的突破方法:

三、课堂引入

创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.

四、例习题分析

例1(p83例2)

分析:⑴了解方位角,及方位名词;

⑵依题意画出图形;

⑶依题意可得pr=12×1。5=18,pq=16×1。5=24,qr=30;

⑷因为242+182=302,pq2+pr2=qr2,根据勾股定理的逆定理,知∠qpr=90°;

⑸∠prs=∠qpr—∠qps=45°.

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.

分析:⑴若判断三角形的形状,先求三角形的三边长;

⑵设未知数列方程,求出三角形的三边长5、12、13;

⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.

解略.

本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.

数学定理的教案篇6

教学目标:

一知识技能

1.理解勾股定理的逆定理的证明方法和证明过程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

二数学思考

1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.

三解决问题

通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.

四情感态度

1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.

教学重难点:

一重点:勾股定理的逆定理及其应用.

二难点:勾股定理的逆定理的证明.

教学方法

启发引导分组讨论合作交流等。

教学媒体

多媒体课件演示。

教学过程:

一复习孕新,引入课题

问题:

(1) 勾股定理的内容是什么?

(2) 求以线段ab为直角边的直角三角形的斜边c的长:

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分别以上述abc为边的三角形的形状会是什么样的呢?

二动手实践,检验推测

1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.

教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.

2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

三探索归纳,证明猜想

问题

1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?

2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

3.如图18.2-2,若△abc的三边长

满足

,试证明△abc是直角三角形,请简要地写出证明过程.

教师提出问题,并适时诱导,指导学生完成问题3的.证明.之后,归纳得出勾股定理的逆定理.

四尝试运用,熟悉定理

问题

1例1:判断由线段

组成的三角形是不是直角三角形:

(1)

(2)

2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?

教师巡视,了解学生对知识的掌握情况.

特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

五类比模仿,巩固新知

1.练习:练习题13.

2.思考:习题18.2第5题.

部分学生演板,剩余学生在课堂练习本上独立完成.

小结梳理,内化新知

六1.小结:教师引导学生回忆本节课所学的知识.

2.作业:

(1)必做题:习题18.2第1题(2)(4)和第3题;

(2)选做题:习题18.2第46题.