幂函数的教学设计6篇

时间:2022-12-31 作者:Kris 教学计划

在动笔写教学设计前,老师们需要结合以往的教学经验写作,教学设计是每位教师都应该提前准备好的,下面是范文社小编为您分享的幂函数的教学设计6篇,感谢您的参阅。

幂函数的教学设计6篇

幂函数的教学设计篇1

教学目标:

1.结合实例,了解幂函数的概念

2.结合具体的幂函数的图象,了解它们的变化情况及性质

3.在探讨幂函数性质的过程中,体会由特殊到一般及数形结合的数学思想方法

教学重点:幂函数的图象和性质

教学难点:画幂函数的图象并由图象概括其性质

教学过程:

教学内容问题、任务师生活动设计意图

一、幂函数的定义

二、几个具体幂函数的图象

三、几个具体幂函数的性质

四、小结提升

五、作业

1.某种蔬菜每千克1元,若购买千克,需要支付元是函数吗?

2.正方形的边长为,那么它的面积是的函数吗?

3.立方体的边长为,那么它的体积是的函数吗?

4.正方形的面积为,那么它的边长是的函数吗?

5.某人内骑车 内行进了1,那么他骑车的平均速度是函数吗?

6.这五个函数有什么共同特征?

7.给出幂函数的定义

8.下列函数是幂函数吗?

9.幂函数的定义和指数函数的定义有什么区别?

10. 已知幂函数的图象过点(4, ),求这个函数的解析式?

11. 观察幂函数的图象

12.作函数的图象。

13. 作函数的图象。

14.作函数的图象。

15.根据所作函数的图象,分别讨论这些函数的性质。

16.你能证明幂函数在[0,+ 上是增函数吗?

17.从整体上把握幂函数的图象。

作业p79习题1、2、3

师:投影展示问题,引导学生根据函数的定义进行分析。

生:根据函数定义思考并回答。

师:板书这5个函数表达式。

师生:从形式上分析:是指数幂的形式,其中底数是自变量,指数是常数。

师:板书定义。

生:根据幂函数的形式进行辨别。

生:对比指数函数的定义,指出区别。

师生:用待定系数法共同完成。

师:几何画板展示幂函数图象,随着指数 的改变,幂函数图象的形态和位置都发生改变。

生:观察指数的变化和图象的变化

师:幂函数的图象因指数 不同而形态各异,远比指数函数的.图象复杂。但我们可以通过讨论其中有代表性的几个函数来了解幂函数的图象特征。生:在同一坐标系中作出三个函数的图象。

师:巡视指导。

师:用几何画板作出三个函数的图象。

师:提示横坐标取值: 。巡视学生作图情况。

生:列表,并描点作图。

师:投影函数图象。

师:指导作图:取横坐标0。

生:作图。

师:投影图象。

师:引导学生根据函数的图象,指出函数的性质。

生:指出函数性质并完成课本第78页表格。

生:尝试证明。

师生:共同完成证明。

师:几何画板动态展示幂函数在第一象限的图象,引导学生观察图象的变化。师生共同归纳图象的主要特征:在 上:减函数 :猛增:增函数 :缓增通过实际问题,引入幂函数。由特殊到一般的提练、概括。形式定义,注意辨别。对比,加深印象,避免与指数函数混淆。进一步加强理解幂函数定义。对幂函数的图象作整体感知,了解幂函数的图象和性质与指数 关系密切。三个函数都是初中学过的,描三个点作出简图,把握图象的主要特征。数形结合。

幂函数的教学设计篇2

一、教材分析

集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.

函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.

二、学情分析

1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.

2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.

3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.

三、设计思路

本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.

四、教学目标分析

(一)知识与技能

1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.

a:能从集合间的运算分析出集合的基本关系.b:对于分类讨论问题,能区分取交还是取并.

2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.

a:会用定义证明函数的单调性、奇偶性.b:会分析函数的单调性、奇偶性、对称性的关系.

(二)过程与方法

1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.

2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.

(三)情感态度与价值观

在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.

五、重难点分析

重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.

难点:含参问题的讨论,函数性质之间的关系.

六.知识梳理(约10分钟)

幂函数的教学设计篇3

教材分析:

函数是中学数学中非常重要的内容,是刻画和研究现实世界变化规律的重要模型。它贯穿于整个初中阶段的始终,同时也是历年中考的内容之一。初二数学中的函数又是中学函数知识的开端,是学生正式从常量世界进入变量世界,因此,努力上好初二函数部分的内容显得尤为重要。

一次函数的性质是在明确了一次函数的图象是一条直线后,进一步结合图象研究一次函数的性质,从而使学生对一次函数有了从“数”到“形”、从“形”到“数”的两方面理解,从而展开了一个“数形结合”的新天地。而且这节课的`研究也为学生今后进一步学习反比例函数的性质和二次函数的性质打下良好的基础。

目标设计:

(1)知识与能力:

1、在认识一次函数图象的基础上,探索一次函数y=kx+b(k≠0)的性质。

2、观察图象,体会一次函数k、b的取值和图象的关系,提高数形结合的思想。

(2)过程与方法:

1、让学生学会观察图象,能从一次函数的图象中更好地理解函数的两个变量x、y之间的关系。

2、启发学生对所取的值和所画一次函数图象进行探究观察,并对所得的结论进行总结,最后形成一次函数的性质。

(3)情感态度与价值观:

让学生全身心的投入到学习活动中去,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。

教学重点:

比较和观察一次函数的图象,总结出一次函数的性质,并会加以运用。逐步培养学生从特殊到一般、数形结合等数学思想。

教学难点:

一次函数性质的探索、语言的准确描述、归纳总结及应用。

教学关键:

引导学生正确理解一次函数性质及其对应关系;教会学生学会观察探索函数图象,最后由性质又回归函数关系式。

教法方法:探究式、启发式

学习方法:自主学习、合作交流

方法设计:

(一)复习巩固,导入新课:

1、一次函数的图象是怎样的?确定图象时经过哪些特殊点?

2、让学生动手画一次函数y=x+1和y=3x-2的图象,并进行观察探索,得出一次函数图象的分布特征,然后提出问题:为什么一次函数的图象会有这种分布特征,由哪些因素来决定?图象的点是否也会随着自变量x的变化而有规律地发生变化呢?本课我们就将一起来研究这个问题。

板书课题:一次函数的性质

出示教学目标:

1、在认识一次函数的图象的基础上,探索一次函数y=kx+b(k≠0)的性质。

2、观察图象,体会一次函数k、b的取值和图象的关系,提高数形结合的思想。

(二)探究新知:

1、自主学习,整体感知:

学生自己看书,整体感知本节课的学习内容,围绕目标学习,圈点出难点、疑点。

2、小组讨论,合作交流:

(1)(用列表法)当x取-2、-1、0、1、2时,一次函数y=x+1和y=3x-2的值分别是多少?并观察y随x的变化情况;

(2)并观察你自己画的一次函数的图象,探索以下问题:

①当自变量x从小到大逐渐增大时,各x在同一支图象上的对应点在直线上作何变化?

②关系式中的`b究竟影响到图象的哪个方面?

(3)再画出函数y=-x+2和y=-x-1的图象,做类似的研究,这两个函数有什么共同特征?它与前面两个函数有什么不同?

(4)从对以上四个函数的研究结果中,你能概括出关于一次函数的一般结论吗?

3、展示反馈:

抽小组代表将各小组内交流的结果展示给大家,不足之处先交给学生处理,若学生处理不好或不当,教师再点拨指导,教师对在这个环节表现好的同学给予评价,适当鼓励学生,调动大家的积极性。

学生明确:

一次函数y=kx+b(k≠0)的性质:

当k>0时,y随x的增大而增大,函数图象必过一、三象限,从左到右上升;

当k

练习设计:

1、做游戏:

任意抽几名同学各说出一个一次函数,其他小组抢答这个一次函数的性质,展开竞赛,看哪个小组说的又对又快,实行加分制。

2、做一做:画出函数y=-2x+2的图象,结合图象回答下列问题:

(1)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?

(2)当x取何值时,y=0?当y取何值时,x=0?

(3)当x取何值时,y>0?

(4)函数的图象不经过哪个象限?

课堂小结:

1、学生谈谈本节课的收获?

2、教师强调一次函数的性质,y=kx+b(k≠0)中k、b的取值对一次函数的影响:

(1)k的取值←→y随x的增大而增大(减小)←→函数图象从左到右上升(下降)←→函数图象过一、三象限(二、四象限)。

(2)b的取值←→函数图象与轴的交点情况。

课后作业:

1、课后练习1、2题。

2、课本习题17.3中的第8题。

板书设计:

1、复习:

一次函数的图象是什么形状?如何画一次函数的图象?(板演要点)

2、问题引入

请同学们在一个平面直角坐标系内画一次函数的图象(学生板演);

3、一次函数的性质:(板演要点)

(1)当k>0时,y随x的增大而增大,函数图象过一、三象限,从左到右上升。

(2)当k

(3)b决定了图象与y轴的交点位置(即b>0时,图象与y轴的交点在x轴的上方;b

幂函数的教学设计篇4

1、总体设计说明

幂函数是函数教学的最后一个函数,在通过学习了指数函数与对数函数之后,同学们已经基本掌握了研究函数的一般方法,因此幂函数是交给学生自主研究的一个重要的契机。函数的学习,目的在于通过对几个基本初等函数的研究让学生掌握研究一个陌生函数的方法。

基于以上认识,确定本节课的教学目标如下

(1)引导学生从具体实例中概括典型特征,形成幂函数的概念,并用数学符号表示。

(2)运用数学结合的思想,让学生经历从特殊到一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。

(3)能够利用幂函数的性质比较两个数的大小

教学重点与难点如下

教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质

教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质

本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。

本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用

2、教学过程剖析

2.1创设情境 建构概念

问题1 (1)正方形的边长a与面积s之间是函数关系吗?

(2)正方体的边长a与体积v之间是函数关系吗?

?设计意图】 从实际的问题引入,让学生感受幂函数与实际的联系,初步感受幂函数

学生找到两个变量之间的函数关系,并给出函数的解析式: 和 。

师:我们把形如 的函数称为幂函数。

直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。

师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊 ,图像长什么样子?

生:是一条直线。

师:你确定是一条直线吗?

生:是一条直线去掉一个点 师:为什么?

生:定义域中x不能取到0。

师:我们研究函数一般先看函数的定义域。

师:我们可以先研究 的情况,你打算研究 为哪些值?

?设计意图】引导学生思考如何选取 的研究起来比较方便,一般学生会选择 为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。

幂函数的教学设计篇5

教学活动设计:

(一)实际问题引出概念

我们在生活中常见到一些机器零件,它的边缘是圆滑的,我们最熟悉的操场上的跑道,它的跑道线也是很圆滑的.

想一想:跑道线是怎样的线组成的?

画一画:跑道的大致图形.

指导学生发现线线的位置关系,引出连接的有关概念:

1、由一条线(线段或圆弧)平滑地过渡到另一条线上,这种平滑地过渡,称圆弧连接,简称连接.

2、连接时,线段与圆弧、圆弧与圆弧在连接处相切.

3、外连接、内连接.

组织学生阅读理解教材内容

(二)深刻理解概念

“连接”是“平滑地过渡”,怎样算“平滑“?像下面图中,实线画出的线段和圆弧,圆弧和圆弧,虽然也有相切的关系,但它们不是连接.

理解:线与线连接有两个必备条件:①连接时,线段与圆弧,圆弧与圆弧在连接处相切.②线段与圆弧应分居在圆心与切点所在直线的两侧;圆弧与圆弧分居在连心线的两侧,二者缺一不可.

(三)圆弧与线段、圆弧与圆弧连接图形的画法

例1: 已知:线段ab和r(如图).

求作: ,使它的半径等于r,,并且在点a与线段ab连接.

作法:1、过点a作直线pa⊥ab.

2、在射线ap取ao=r.

3、以o为圆心,r为半径作 ,使ab、 在oa的两侧.

就是所求作的弧.

说明:画圆弧与线段的连接,主要运用了切线的性质定理的推论2:经过切点且垂直于切线的直线必过圆心,找出了圆心,圆弧也就不难画了.

例2、 已知:如图, 的半径为r1,圆心为o1;线段r2.

求作:半径为r2的 ,使 与 在点a外连接.

作法:1、连结o1a,并且延长到点o2,使o1 o2 = r1+ r2.

2、以o2为圆心,o1 o2为半径作 ,使 与 在的两侧.

就是所求作的弧.

说明:画圆弧与圆弧的连接,主要运用“两圆相切,切点一定在连心线上”这个结论.

练习题:p148练习,1、2.

(三)小结

主要内容:

1、什么是连接?什么是外连接?什么是内连接?

2、任何一种连接,其实质就是两线相切,在切点处相连接,是切点两侧的线段和圆弧或圆弧与圆弧相连接.

3、对于给出的题目,画出连接图形关键在于确定圆心.

(四)作业

教材p151习题a组16.

课外题:画一个生活中的有关连接图形的比例图,下节课展示.

相切在作图中的应用(二)

教学目标:

(1)进一步理解连接等概念及连接的原理;

(2)进一步培养学生的作图能力;

(3)通过对作图题的分析,培养学生的分析问题能力.

教学重点:

深刻理解连接的意义,能对具体图形熟练地进行弧连接.

教学难点:

作图时圆心、半径的确定

教学活动设计:

(一)概念复习与理解

练习1、下列命题中,正确的是(c)

(a)将一段弧和一条线段连到一起的图形叫连接;

(b)一段给出半径的圆弧可以和一直线连接;

(c)两段给出不等半径的圆弧可以用内、外两种连接方式连接;

(d)两段圆弧内切就是内连接.

练习2、内、外连接的区别是( c )

(a)内连接两弧在连心线同侧,而外连接两弧在连心线两侧;

(b)内连接两弧在切点同旁,外连接两弧在切点两旁;

(c)内连接是内切两圆弧连接,外连接是外切两圆弧连接;

(d)内连接是外切两圆弧连接,外连接是内切两圆弧连接.

(二)连接图形的应用

例3、(教材p148)如图,要把零件中直角a加工成半径为15mm的圆角(即用一条半径为15mm的圆弧连接边ab与边ac)在图上画出这条圆弧.

分析:圆弧的半径已知,要画出这条圆弧,只要求出它的圆心即可.因为圆弧要与ab和ac都相切。所以圆心到边ab和ac的距离都等于15mm,实际上四边形aeop是正方形,它的顶点o在∠cab的平分线上.

(参看教材p148)

充分给学生时间让学生自己分析、研究、写出画法,画出图形.

练习:把两边长分别为8cm和5cm的矩形的4个直角改画成圆角,使圆弧的半径等于1cm.

(三)展示作品

对上节课课外作业中较好的连接图形,展示.既提高学生的学习积极性,又激发学生在教学过程中的参与热情.

(四)小结

1、连接在实际生活中的应用,可以改变物体的表面形状.

2、任何一种连接的问题经过分析后都能转化为基本图形:“线段与弧的连接;圆弧与圆弧的内连接;圆弧与圆弧的外连接.

3、连接的关键是确定所求圆弧所在圆的圆心.

4、线段可在一点处与两条弧同时连接.

(五)作业 教材p154中18,b组2.

探究活动

问题:如图三圆两两相切,切点分别为c、o、d,与半圆o分别切于点a、e、b,请你找出图中除线段ab和弧以外的6条从a点平滑过渡到b点且没有重复弧的路线,并指出在经过个点处是什么连接(内连接、外连接).

幂函数的教学设计篇6

一、常量、变量:

在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;

二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.

三、函数中自变量取值范围的求法:

(1).用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、 函数图象的定义:

一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

五、函数值:

函数值是指自变量在数值范围内取某个值时,因变量与之对应的确定的值

例如:在正方形的面积公式s=a2中,若a=2;则s=4;若a=3,则s=9,这说明4是当a=2时的函数值,9是当a=3时的函数值

六、函数有三种表示形式:

(1)列表法 (2)图像法 (3)解析式法

七、正比例函数与一次函数的概念:

一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.

当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.

八、正比例函数的图象与性质:

(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k

九、一次函数与正比例函数的图象与性质

一次函数概念

如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数.

图 像

一条直线

性 质

k>0时,y随x的增大(或减小)而增大(或减小);

k<0时,y随x的增大(或减小)而减小(或增大).

直线y=kx+b(k≠0)的位置与k、b符号之间的关系.

(1)k>0,b>0; (2)k>0,b<0;

(3)k>0,b=0 (4)k<0,b>0;

(5)k<0,b<0 (6)k<0,b=0

一次函数表达式的确定

求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.

5.一次函数与二元一次方程组:

解方程组

从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值,一次函数知识要点

解方程组

从“形”的角度看,确定两直线交点的坐标.

十、求函数解析式的方法:

待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.

2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标

3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.

4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围