体积与体积单位教案7篇

时间:2022-12-14 作者:loser 备课教案

无论我们面对的是什么样的教学任务,都要提前写好自己的教案,想要课堂能够顺利地进行,我们就要提前准备好相关的教案,下面是范文社小编为您分享的体积与体积单位教案7篇,感谢您的参阅。

体积与体积单位教案7篇

体积与体积单位教案篇1

[教学目标]

1、了解并掌握体积单位间的进率。

2、理解并掌握体积高级单位与低级单位间的化和聚。

3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

[教学重点、难点]:体积单位间的进率和单位之间的互化

[教学过程]

一、导入

1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。

2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。

3、思考回答:你觉得他的整理如何?有什么需要补充的?如何进行单位间的互化?

4、猜想今天我们学习的相邻体积单位间的进率可能是多少?

二、自主探究、学习新知

(一)探究立方分米与立方厘米间的进率

1、指导学生分组进行探究,

①棱长1分米的正方体的体积是多少?

②棱长10厘米的正方体的体积是多少?

③1立方分米与1000立方厘米,哪个大?为什么?

2、提供:

①教师提供1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,供学生观察。

②让学生可以观察分析,从而为得出结论提供感官上的支持。

3、交流学习结果,分组汇报:

因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米

10厘米×10厘米×10厘米=1000立方厘米

所以:1立方分米=1000立方厘米

4、让学生在回顾一下思维的过程,再说说自己的理解。

a、一个棱长1分米的正方体,体积1×1×1=1立方分米,这个正方体的棱长也可以想成10厘米,体积10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。

b、1立方分米的正方体,每层有10×10=100(个)1立方厘米的小正方体,10层有100×10=1000(个),所以是1000立方厘米。

学生讨论:一个棱长1分米的正方体,体积1×1×1=1立方分米,这个正方体的棱长也可以想成10厘米,体积10×10×10=1000立方厘米,所以1立方分米=1000立方厘米。

教师演示:1立方分米的教具,每层有10×10=100(个)1立方厘米的小正方体,10层有100×10=1000(个),所以是1000立方厘米。

(二)独立探究立方米与立方分米之间的进率

1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?

教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)

2、学生自己尝试解决问题

3、交流各自的思维过程:

棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。

所以1立方米=1000立方分米(板书)

4、小结:相邻的两个体积单位之间的进率是1000。

5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

三、解决实际问题,巩固所学方法

1、教学例1:3.8立方米是多少立方厘米?

2400立方厘米是多少立方分米?

(1)学生尝试练习,在书上完成。

(2)交流方法:高级单位的数改写成低级单位的数,要乘进率,小数点向右移动对应的位数;低级单位的数 改写成高级单位的数,要除以进率,小数点要向左移动对应的位数。

2、完成47页做一做

学生独立作业时.提醒学生要认真审题.请学生说一说相邻两个面积单位的进率是多少。

四、全课总结

今天的学习中你有什么收获?学到了什么?

五、布置课堂作业

完成练习八2题.5题

体积与体积单位教案篇2

教学目标

1.学生能够结合具体实物说出体积的含义。知道常用的体积单位,并且能用体积单位合理估计物体的体积的大小。

2.学生通过具体的观察比较、思考交流、感悟体验等学习活动,经历物体体积概念的形成过程,逐步建立空间观念。

3.在学习活动中,培养学生细心观察,认真分析,交流倾听,善于比较的学习习惯。

学情分析

在原来知识结构里:学生学习了线段的长度、面积的大小及相关的计量单位,学生初步建立了一维二维的空间观念。这些为学习新知奠定了基础。

体积对于小学生来说是一个全新的概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。为了更深入地了解教材的编写意图,我对北师大版、苏教版、人教版的本课内容做了比较。发现它们有一个共同特点:都是通过实验演示或操作活动,让学生在体验中理解体积的含义,构建体积单位的表象。因此,我由学生熟悉的事物入手,引导学生观察、思考、回顾、感知、操作、想象,让学生在体验中感知,在对比中学习,逐步达到对概念的认识与理解。

教学重点:

学生能够在观察思考、感知体验、操作想象等活动中建立体积概念及体积单位的表象。

教学难点:

在具体的体验活动中理解体积的含义,经历体积是1立方厘米、1立方分米、1立方米的大小的表象形成过程。

教学过程

活动1【导入】体积和体积单位

一、对比引入新知。

学生汇报:分别是线段,长方形和正方形,长方体或正方体。

教师引导:

线段有长短之分,长(正)方形和长(正)方体有大小之别。

为了表示物体的长短,我们认识了长度。

为了表示物体平面部分的大小,我们学习了面积。

如果要表示整个物体的大小,那又将产生什么呢?

这节课老师和同学们一块来学习。

?设计意图】对比引入,既能激发学生学习新知的兴趣,同时又引发学生的思考:这三者相互之间有联系吗?

活动2【活动】体积和体积单位

二、活动揭示概念。

活动一:体验书包里的空间。

提出问题:观察一下自己的书包,是不是还可以再放些东西?

学生汇报:有的已经装满,有的还可以再放些东西。

教师引导:书包没塞满说明它还有一定的空间。书包已经塞满,说明它没有了空间。它的空间被占据了。(板书:空间)

追问:书包的空间被谁占据了?

学生汇报:书占据了书包的空间,学习用具也占据了一定的空间,还有一些喜欢吃的食品,同样也可以把书包的空间占据了。

追问:这说明什么?

学生汇报:任何物体都会占据一定的空间的。(板书:物体占空间)

教师进一步引导:大家可以举例说一说生活中物体占有空间的现象。

学生交流:我们占据教室的空间教室占据学校的空间学校占据小区的空间……

?设计意图】学生身边引入,通过引导观察和思考,让学生体验书包里有“空间”。并随之拓展,将空间这一概念形象化,具体化,丰富学生的空间表象。

活动二:观察演示实验。

1.盛水的杯子装入石头,水面升高。

2.装满沙的杯子倒出沙子,放入石块,结果沙子不能全部被装入。

3.与第一个实验相比,盛水的杯子装入一块较大石头,水面升高的幅度较大。

提出问题:你能解释实验现象吗?

学生交流:水面升高,是因为石头把水的空间占据了。

沙子不能被装入,是因为石头占据了沙子的空间。

石头较大,占据的空间就较大,水就升的高。

教师归纳:物体要占据空间,并且所占的空间大小是不一样的。(补充板书:物体所占空间的大小)

教师引导:粉笔盒与电脑桌比,粉笔盒占据的空间小,电脑桌占据的空间大……为了更加简洁地表示物体所占空间的大小,我们引入了“体积”(板书)

引导学生叙述:书包的体积是书包所占空间的大小,电脑的体积是指……教室的体积是指……

引导概念:物体的体积是表示物体所占空间的大小。

?设计意图】为了进步加深学生对“空间”的理解,以及对概念的完善,继续通过演示实验,帮助学生直观感受物体所占空间的大小,步步相扣,层层推理,逐步引出物体的体积概念,较好地处理好了体积概念的抽象。

三、多角度认识单位

1.认识单位产生的必要性。

物体所占空间有大有小,所占空间大就是体积大,所占空间小,就是体积小。

下面的电冰箱、小水杯和篮球,哪个体积大?哪个体积小?

学生交流:电冰箱体积最大小水杯的体积最小。

问题引导:上面的物体,体积大小非常直观,若是像这样的两个物体,你能一子比较出它们体积的大小吗?

学生建议将它们分成若干个大小相同的小立方体。教师课件演示。

结论:要想比较它们的大小,必须要有统一的体积单位。

2.对比加深记忆。

同学们打开课本第39面,自学书上内容,看看常见的体积单位有哪些?书上是怎样描述的。

学生汇报:棱长是1厘米的`正方体,体积是1立方厘米

棱长是1分米的正方体,体积是1立方分米

棱长是1米的正方体,体积是1立方米

填写表格:通过比较,使学生能够感受单位的共同结构与特征。从而加深记忆。

意义

常用单位

简写符号

长度

面积

体积

3.建立单位表象。

教师出示准备好的1立方厘米和1立方分米的正方体模型和其它实物。

辨认:让学生找出1立方厘米的正方体,并说说身边哪些物体的体积大约是1立方厘米。

举例:一个手指尖的大小、一个筛子的大小、一个键盘字母按键的大小等。动手摸一摸,亲自学生感受1立方厘米实际大小。

操作:用12个1立方厘米的正方体摆成一个长方体,有几种摆法?

想象:棱长是1厘米的正方体,体积是1立方厘米。2个这样正方体,体积是2立方厘米,10个呢?100个呢?1000个呢?那么1000立方厘米又有多大呢?

②找出1立方分米的正方体,说说身边哪些物体的体积大约是1立方分米。

感受1立方分米实际大小或几立方分米。

认识1立方米

先让学生比划。看看教室里面那些物体的体积接近1立方米。

学生体验:三把米尺借助教室的一个墙角共同来做一个1立方米的空间。1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”

教师可进一步举例:一个橱柜的大小,一个电脑柜的大小约是1立方米。

1立方米的水可以装满500个暖瓶。

?设计意图】学生对一个新的概念的接受和形成需要不断地体验和强化,本环节学生通过观察、比较、感知、操作、想象等活动逐步建立单位的表象,较好地渗透了单位化的思想。

活动3【练习】体积和体积单位

四、巩固运用提升。

1.结合具体实物说一说体积的含义。

电脑的体积是指电脑所占空间的大小。

2.在下面括号里填上适当的单位。

体积与体积单位教案篇3

教学内容:

体积单位间的进率

教学目标 :

1、使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000。

2、在探索体积单位进率的过程中,获得积极的学习的体验,增强学好数学的信心。 教学

教学重点:

体积单位之间的进率推导过程。

教学难点:

归纳相邻体积单位间换算的方法。

课前准备:

正方体 教法学法 实践法、讨论法

教学过程:

一、激趣导入

1、谈话:同学们,今天我们要学习体积单位间的进率。

2、引导学生回忆我们以前学过哪些单位间的进率。

3、提问:(1)常用的长度单位有米、分米、厘米,相邻的两个面积单位间的进率是多少?

(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?

(3)常用的体积单位有哪些?猜想今天我们学习的相邻体积单位间的进率可能是多少?

二、引入新课

到底你们的猜想对不对呢?让我们一起验证一下。

猜想

1、认识体积单位间的进率。

(1) 出示棱长1分米的正方体,提问:体积是多少?

给一条棱涂色,提问:棱长多少厘米?(10厘米。)

提问:体积是多少?

(101010=1000(立方厘米)。)

教师:由此可知1立方分米等于多少立方厘米?学生口答后老师板书:1立方分米=1000立方厘米

(2) 教师:如果把刚才的图理解为棱长1米,即体积为1立方米,它的体积是多少立方分米?

学生口答老师板书:1立方米=1000立方分米。

请生说一说推导过程。

教师:能说一说相邻的两个体积单位间的进率是多少吗?(1000。)

(3)完成课本34页表格,进一步区分长度、面积、体积单位及进率。

2、体积单位的互化。

(1) 教师:在日常生活、工作和学习中,经常需要把体积单位进行转化,现在来学习这个问题。

出示例3: 3.8立方米是多少立方分米?

教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?如何计算?并说出这样计算的理由。

学生边讨论边试算。然后归纳,老师:大化小,乘进率。

3.81000=3800立方分米

(2)2400立方厘米是多少立方分米?

生独自完成,集体订正,说明计算过程。

(3)说一说这两道题有什么不同?学生讨论后归纳,老师小结。

高级单位低级单位,用进率高级单位的数。

低级单位高级单位,用低级单位的数进率。

三、巩固提高

1、试解下面几题

①2米380立方分米=( )立方米;

教师可作提示:哪部分需要转化?没转化的部分如何办?

②5.34立方分米=( )立方分米( )立方厘米。

2、课本做一做

总结

今天你有哪些收获?还有什么疑问?

作业布置 课本p36练习八:1。(写出转化过程)

板书设计

体积单位间的进率

1立方分米=1000立方厘米

1立方米=1000立方分米

高级单位低级单位,用进率高级单位的数。

低级单位高级单位,用低级单位的数进率。

体积与体积单位教案篇4

目标

使学生在理解的基础上掌握常用的体积单位之间的进率和名数的改写。

教学及训练

重点

体积单位之间的进率。

仪器

教具

投影仪和棱长是1分米的正方体模型,如教材第26页的图。

教 学内容和过程

教学札记

一、创设情境

填空:

①长方体体积=;

②常用的体积单位有、、;

③正方体体积=。

师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

二、探索研究

1.小组学习--体积单位间的进率。

(1)出示:1个棱长是1分米的正方体模型教具。

提问:

①当正方体的棱长是1分米时,它的体积是多少?

②②当正方体的棱长是10厘米时,它的体积是多少?

③③而1分米是多少厘米?1立方分米等于多少立方厘米?

小组合作填表:

正方体

棱长

1分米

=

10厘米

体积

1立方分米

=

1000立方厘米

小组汇报结论:1立方分米=1000立方厘米

同理得出:1立方米=1000立方分米

用填空的形式:

从上面可以看出,相邻两个体积单位之间的进率都是。

(2).将长度单位、面积单位、体积单位加以比较(投影显示第26页的表)

先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?

(3)学习体积单位名数的改写。

先思考:

(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

出示例3,并写成如下形式:

8立方米=()立方分米0.54立方米=()立方分米

出示例4,并写成如下形式:

3400立方厘米=()立方分米96立方厘米=()立方分米

学生独立思考,再小组讨论自己是怎样想和做的。

出示例3。(投影显示)

放手让学生独立审题并解答,再针对出现的问题重点讲解。

解法一:

1.8×1.5×0.01=0.027(立方米)

0.027立方米=27立方分米

解法二:

1.8米=18分米1.5米=15分米0.01米=0.1分米

18×15×0.1=27(立方分米)

三、巩固练习

将练习五的第1、2题填在书上,老师进行个别辅导后订正。

四、课堂。学生今天学习的内容。

五、课后作业

练习五的3、4题。

体积单位之间的进率

常用的体积单位及进率:

立方米、立方分米、立方厘米

1立方米=1000立方分米

1立方分米=1000立方厘米

注意点:

高级单位的数转化成低级单位的数要乘以进率,低级单位的数转化成高级单位的数要除以进率。

在实际计算中要注意单位的统一。

体积与体积单位教案篇5

一、教学内容

体积单位(教材43页 ,45页练一练1,2)

二、教学目标

1、认识体积单位:立方米、立方分米、立方厘米

2、在操作交流中,感受立方米、立方分米、立方厘米的实际意义,发展空间观念

三、教学重点

认识体积单位、建立表象

四、教学难点

感受体积单位的意义

五、教学具准备

剪刀、透明胶、米尺、橡皮泥

六、教学过程

(一)、复习引入

选单位填空:小明身高150( ) 教室的面积为40( )

富民到昆明的距离是24( )

游泳池水深2( )占地面积250( )

这是以前我们所学过的长度单位和面积单位。

(二)、教学实施

老师:在实际生活中和工作中,有时只要凭感觉就能判断出谁大谁小,但有时也需要知道物体到底有多大,比如一个火柴盒的体积是多少?一个手机盒的体积是多少?一个游泳池的体积有多大等等,就要用到体积单位:立方厘米、立方分米、立方米。板书:课题

1、认识1立方厘米

(1)出示1立方厘米模型

(2)分组观察﹑探究交流,然后汇报,你知道了什么?

引导学生:看一看:1立方厘米的体积比较小

量一量:1立方厘米正方体棱长是1厘米

说一说:棱长为一厘米正方体体积为1立方厘米

想一想:体积是1立方厘米的物体有多大

做一做:橡皮泥做体积为1立方厘米的正方体

拼一拼:2立方厘米、5立方厘米、10立方厘米

举一举:生活中哪些物体体积约为1立方厘米(如蚕豆﹑玻珠、手指末节等)

2、认识1立方分米

(1)出示1立方分米模型

(2)分组观察、探究、汇报,你知道了什么?

看(大小) 量(长短) 说 (概念) 想(有多大) 做(正方体) 拼 (体积)

举一举:柚子、菠萝等

3、认识1立方米

(1)学生分组探究

根据以上的体积单位推测,什么样的体积是1立方米(板书)

(2)四个同学围成1立方米空间,用米尺在墙角搭一搭

(3)哪些物体体积约为1立方米?(电视箱子、太阳能水塔)

(4)课外延伸

你们知道一吨水的体积是多少?一吨水的体积就是1立方米,教师教育水资源有限,节约用水。

4、互相讨论:这三个体积单位的共同点和不同点是什么?(都是正方体、棱长不同)

5、比较长度单位、面积单位、体积单位的不同

(距离大小)(表面大小)(空间大小)

6、练一练:p45第一题

7、练一练:p45第二题

独立完成,小组讨论,集体订正

(三)、头脑风暴

10002=100×100×100 10000-0=10000 (打两个成语)

(四)、课堂作业

1、想一想,填一填

(1)常用的体积单位有 、 、 。

(2)棱长为1厘米的正方体,体积是 ,

棱长为1分米的正方体,体积是 ,

棱长为1米的正方体, 体积是 。

2、选择适当的单位名称填在括号里。

(1)一块巧克力的体积约是6( )

(2)一个成人鞋盒体积约是6( )

(3)一块橡皮的体积约是8( )

(4)一载重汽车车厢体积约是8( )

(5)一把椅子高90( )

(6)一张单人床的面积约是2( )

3、连线

学校主席台的体积 24立方厘米

书包的体积 24立方米

碳素墨水盒的体积 24立方分米

4、说说身边物体的体积

(五)课堂小结

请同学们想一想,相互交流,共同分享:

这节课你学会了什么?

体积与体积单位教案篇6

教学重点 体积单位之间的进率。

教学用具 投影仪和棱长是1分米的正方体模型,如教材第37页的图。

教学过程

一、创设情境

填空:①长方体体积= ;②常用的体积单位有 、 、 ;③正方体体积= 。

师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

二、探索研究

1.小组学习——体积单位间的进率。

(1)出示:1个棱长是1分米的正方体模型教具。

提问:①当正方体的棱长是1分米时,它的体积是多少?②当正方体的棱长是10厘米时,它的体积是多少?③而1分米是多少厘米?1立方分米等于多少立方厘米?

小组合作填表:

正方体 棱长 1分米 = 10厘米

体积 1立方分米 = 1000立方厘米

小组汇报结论:1立方分米=1000立方厘米

同理得出:1立方米=1000立方分米

用填空的形式小结:

从上面可以看出,相邻两个体积单位之间的进率都是 。

(2).将长度单位、面积单位、体积单位加以比较(投影显示第38页的表)

先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?

(3)学习体积单位名数的改写。

先思考:

(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

出示例3,并写成如下形式:

8立方米=( )立方分米 0.54立方米=( )立方分米

出示例4,并写成如下形式:

3400立方厘米=( )立方分米 96立方厘米=( )立方分米

学生独立思考,再小组讨论自己是怎样想和做的。

出示例5。(投影显示)

放手让学生独立审题并解答,再针对出现的问题重点讲解。

解法一:

2.2×1.5×0.01=0.033(立方米)

0.033立方米=33立方分米

解法二:

2.2米=22分米 1.5米=15分米 0.01米=0.1分米

22×15×0.1=33(立方分米)

三、课堂实践

将练习八的第1、2题填在书上,老师进行个别辅导后订正。

四、课堂小结。学生小结今天学习的内容。

五、课后作业

练习八的3、4、5题。

体积与体积单位教案篇7

一、创设情境、激发兴趣

导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

二、合作学习,自主探究

1. 体积的意义。

(1)准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

(2)一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

(3)启发学生概括:物体所占空间的大小叫做物体的体积。(板书)

上面三个物体,哪个体积最大?哪个体积最小?

(4)比较:用学生手中的文具比。谁的体积大?谁的体积小?

师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一部分。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自己的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一部分,而地球上的山、川、河流、一切建筑物、人等占地球的一部分。

2. 体积单位:

(1)讲:测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。(板书)

认识体积单位:

常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

( 2)认识立方厘米:

出示:棱长是1厘米的正方体,量一量它的棱长是多少?

说明:它的体积是1立方厘米。

谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

(3)立方分米: (方法同立方厘米)

粉笔盒的体积接近于1立方分米。

(4)认识立方米:

①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

②认识1立方米的空间大小。

1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

小结:常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

体积单位的用途是什么?

3. 体积初步认识:

①决定体积大小,是看它含有体积单位的个数。

2. 练一练:选择恰当的单位:

橡皮的体积用( ),火车的体积用( ),书包的体积用( )。

3. 生活中的数学。

乘分级的行李规定

机场行李托运一般不超过此规格。你知道其他交通工具关于行李的规定吗?

手提行李的三边之和一般不得超过115cm。