教案是教学活动中的根本,所以在制定的时候一定要足够细致,优秀的教案可以不断提升我们的思维逻辑能力,以下是范文社小编精心为您推荐的必修一数学教案5篇,供大家参考。
必修一数学教案篇1
教材:逻辑联结词(1)
目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。
过程:
一、提出课题:简单逻辑、逻辑联结词
二、命题的概念:例:125 ① 3是12的约数 ② 0.5是整数 ③
定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。
如:①②是真命题,③是假命题
反例:3是12的约数吗? x5 都不是命题
不涉及真假(问题) 无法判断真假
上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。
三、复合命题:
1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。
2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的对角线互相 菱形的对角线互相垂直且菱形的
垂直且平分⑤ 对角线互相平分
(3)0.5非整数⑥ 非0.5是整数
观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。
3.其实,有些概念前面已遇到过
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、复合命题的构成形式
如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:
即: p或q (如 ④) 记作 pq
p且q (如 ⑤) 记作 pq
非p (命题的否定) (如 ⑥) 记作 p
小结:1.命题 2.复合命题 3.复合命题的构成形式
必修一数学教案篇2
课题名称
?2.1空间点、直线与平面之间的位置关系》
科 目
高中数学
教学时间
1课时
学习者分析
通过第一章《空间几何体》的学习,学生对于立体几何已经有了初步的认识,能够识别棱柱、棱锥、棱台、圆柱、圆锥、圆台、球,并理解它们的几何特征。但是这种理解还只是建立在观察、感知的基础上的,对于原理学生是不明确的,所以学生此时有很强的求知欲,急于想搞清楚为什么;同时学生经过高中一年的学习,已经具备了一定的逻辑推理能力,只是缺乏训练,不够严密,不够清晰;有一定的自主探究和合作学习的能力,但有待提高,并愿意动手并参与分组讨论。
教学目标
一、知识与技能
1.理解空间点、直线、平面的概念,知道空间点、直线、平面之间存在什么样的关系;
2.记忆三公理三推论,能够用简单的语言概括三公理三推论,会用图形表示三公理三推论,并将其转化成数学符号语言;
3. 明确三公理三推论的功能,掌握使用三公理三推论解决立体几何问题的方法。
二、过程与方法
1.通过自己动手制作模型,直观地感知空间点、直线与平面之间的位置关系,以及三公理三推论;
2. 通过思考、讨论,发现三公理三推论的条件和结论;
3.通过例题的训练,进一步理解三公理三推论,明确三公理三推论的功能。
三、情感态度与价值观
1.通过操作、观察、讨论培养对立体几何的兴趣,建立合作的意识;
2.感受立体几何逻辑体系的严密性,培养学生细心的学习品质。
教学重点、难点
1.理解三公理三推论的概念及其内涵;
2.使用三公理三推论解决立体几何问题。
教学资源
(1)每位同学准备两张硬纸板,其中一张中间用小刀划条缝,铅笔三根;
(2)教师自制的多媒体课件。
?2.1空间点、直线与平面之间的位置关系》教学过程的描述
教学活动1
一、导入新课
1. 回忆构成平面图形的基本元素:点、直线。①两者都是最原始的概念,点没有大小、面积、厚度,直线是向两侧无限延伸的;②点用大写英文字母表示,直线用小写英文字母表示;③ 如果将点看作元素,则直线是一系列点构成的集合,所以点在直线上记作,点不在直线上记作;
2. 提出问题:构成空间几何体有哪些基本元素?(大屏幕出示棱柱、棱锥、棱台)学生很快得到答案:点、直线、平面。
3. 引入课题:什么是平面?点、直线、平面之间有什么样的位置关系?平面有什么性质?这就是我们这堂课要研究的问题。
教学活动2
二、观察操作,合作探究
1. 理解平面的概念
平面也是一个最原始的概念,是向四周无限延伸的,没有边界。一般用希腊字母、、,…表示平面,或者记为平面abc,平面abcd等等。
2. 明确空间点、直线、平面之间存在的位置关系
①点与直线;②点与平面;③直线与平面。
3. 探究平面的性质
⑴ 公理??
① 学生操作,研究如何将铅笔放置到硬纸板内
问题一:铅笔与硬纸板只有一个公共点可以么?
问题二:要将铅笔放置到硬纸板内至少需要几个公共点?
学生通过操作,体会到要将铅笔放置到硬纸板内,只需将铅笔上两点放置到硬纸板内。
② 抽象出公理??
问题一:如何用图形表示公理一?
问题二:要求学生将公理一表示成数学符号的形式;
问题三:公理一有什么功能?
③ 动画演示公理??
⑵ 公理二
① 学生操作,研究过空间中三点能确定几个平面
问题一:若三点共线,能确定几个平面?
问题二:要确定一个平面,需要三点满足什么条件?
学生通过操作,体会公理二所表达的含义。
② 抽象出公理二
问题一:如何用图形表示公理二?
问题二:要求学生将公理二表示成数学符号的形式;
问题三:还能根据什么条件确定一个平面?引出三推论。
问题四:公理二及三推论有什么功能?
③ 动画演示公理二及三推论
⑶ 公理三
① 学生操作,展示两个平面只有一个公共点
问题一:两个平面真的只有一个公共点么?
问题二:这个公共点与这条公共直线有什么关系?
学生通过操作,体会公理三所表达的含义。
② 抽象出公理三
问题一:如何用图形表示公理三?
问题二:要求学生将公理三表示成数学符号的形式;
问题三:公理三有什么功能?
③ 动画演示公理三
教学活动3
三、归纳总结,加深理解
⒈ 平面具有无限延展性;
⒉ 公理一有什么功能?条件是什么?
⒊ 公理二有什么功能?条件是什么?
⒋ 公理三有什么功能?条件是什么?
教学活动4
四、布置作业,课外研讨
⒈ 课后练习p43:1、2、3、4;
⒉ 平面几何中证明平行四边形有哪些定理?这些定理在空间中能否成立?说明理由。
必修一数学教案篇3
1.点的位置表示:
(1)先取一个点o作为基准点,称为原点.取定这个基准点之后,任何一个点p的位置就由o到p的向量 唯一表示. 称为点p的位置向量,它表示的是点p相对于点o的位置.
(2)在平面上取定两个相互垂直的单位向量e1,e2作为基,则 可唯一地分解为 =xe1+ye2的形式,其中x,y是一对实数.(x,y)就是向量 的坐标,坐标唯一 地表示了向量 ,从而也唯一地表示了点p.
2.向量的坐标:
向量的坐标等于它的终点坐标减去起点坐标.
3.基本公式:
(1)前提条件:a(x1,y1),b(x2,y2)为平面直角坐标系中的两点,m(x,y)为线段ab的中点.
(2)公式:
①两点之间的距离公式|ab|=(x2-x1)2+(y2-y1)2.
②中点坐标公式
4.定比分点坐标
设a,b是两个不同的点,如果点p在直线ab上且 =λ ,则称λ为点p分有向线段 所成的比.
注意:当p在线段ab之间时, , 方向相同,比值λ>0.我们也允许点p在线段ab之外,此时 , 方向相反,比值λ
定比分点坐标公式:已知两点a(x1,y1),b(x2,y2),点p(x,y)分 所成的比为λ.则x=x1+λx21+λ,y=y1+λy21+λ.
重心的坐标:三角形重心的坐标等于三个顶点相应坐标的算术平 均值,即x1+x2+x33,y1+y2+y33.
一、中点坐标公式的运用
?例1】已知 abcd的两个顶点坐标分别为a(4,2),b(5,7),对角线的交点为e(-3,4),求另外两个顶点c,d的坐标.
平行四边形的对角线互相平分,交点为两个相对顶点的中点,利用中点公式求.
解:设c(x1,y1),d(x2,y2).
∵e为ac的中点,
∴-3=x1+42,4=y1+22.
解得x1=-10,y1=6.
又∵e为bd的中点,
∴-3=5+x22,4=7+y22.
解得x2=-11,y2=1.
∴c的坐标为(-10,6),d点的坐标为(-11,1).
若m(x,y)是a(a,b)与b(c,d)的中点,则x=a+c2,y=b+d2.也可理解为a关于m的对称点为b,若求b,则可用变形公式c=2x-a,d=2y-b.
1-1已知矩形abcd的两个顶点坐标是a(-1,3),b(-2,4),若它的对角线交点m在x轴上,求另外两个顶点c,d的坐标.
解:如图,设点m,c,d的坐标分别为(x0,0),(x1,y1),(x2,y2),依题意得
0=y1+32 y1=-3;
0=y2+42 y2=-4;
x0=x1-12 x1=2x0+1;
x0=x2-22 x2=2x0+2.
又∵|ab|2+|bc|2=|ac|2,
∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.
整理得x0=-5,∴x1=-9,x2=-8
∴点c,d的坐标分别为(-9,-3),(-8,-4).
二、距离公式的运用
?例2】已知△abc三个顶点的坐标分别为a(4,1),b(-3,2),c(0,5),则△abc的周长为().
a.42 b.82 c.122 d.162
利用两点间的距离公式直接求解,然后求和.
解析:∵ a(4,1),b(-3,2),c(0,5),
∴|ab|=(-3-4)2+(2-1)2=50=52,
|bc|=[0-(-3)]2+(5-2)2=18=32,
| ac|=(0-4)2+(5-1)2=32=42.
∴△abc的周长为|ab|+|bc|+|ac|
=52+32+42
=122.
答案:c
(1)熟练掌握两点 间的距离公式,并能灵活运 用.
(2)注意公式的结构特征.若y2=y1,|ab|=(x2-x1)2=|x2-x1|就是数轴上的两点间距离公式.
必修一数学教案篇4
第一章:空间几何体
1.1.1柱、锥、台、球的结构特征
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本p8,习题1.1 a组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本p7 练习1、2(1)(2)
课本p8 习题1.1 第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本p8 练习题1.1 b组第1题
课外练习 课本p8 习题1.1 b组第2题
1.2.1 空间几何体的三视图(1课时)
一、教学目标
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
四、教学思路
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?
(二)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本p10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本p12 练习1、2 p18习题1.2 a组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
1.2.2 空间几何体的直观图(1课时)
一、教学目标
1.知识与技能
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
练习反馈
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本p16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本p17 练习第5题
2.课外思考 课本p16,探究(1)(2)
1.3.1柱体、锥体、台体的表面积与体积
一、教学目标
1、知识与技能
(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法
必修一数学教案篇5
一、教学目标
1.知识与技能:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法:
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程
(一)创设情景,揭示课题
1、由六根火柴最多可搭成几个三角形?(空间:4个)
2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?
3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知
空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;
旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:
(1)观察棱柱的几何物体以及投影出棱柱的图片,
思考:它们各自的特点是什么?共同特点是什么?
(学生讨论)
(2)棱柱的主要结构特征(棱柱的概念):
①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:
(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:
(1)实物模型演示,投影图片;
(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
3、圆柱的结构特征:
(1)实物模型演示,投影图片——如何得到圆柱?
(2)根据圆柱的概念、相关概念及圆柱的表示。
4、圆锥、圆台、球的结构特征:
(1)实物模型演示,投影图片
——如何得到圆锥、圆台、球?
(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。
5、柱体、锥体、台体的概念及关系:
探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?
圆柱、圆锥、圆台呢?
6、简单组合体的结构特征:
(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。
(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。
(3)列举身边物体,说出它们是由哪些基本几何体组成的。
(三)排难解惑,发展思维
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(四)巩固深化
练习:课本p7练习1、2;课本p8习题1.1第1、2、3、4、5题
(五)归纳整理:由学生整理学习了哪些内容