教案通常包括详细的课程计划,以指导教师如何达到预定的目标,教师可以在教案中设定课堂的氛围和文化,以促进积极的学习氛围,下面是范文社小编为您分享的和蛋数学有关的教案通用5篇,感谢您的参阅。
和蛋数学有关的教案篇1
教学内容:“住新房”练习题
教学目标:
1、掌握用竖式计算两位数乘两位数。
2、能运用所学的两位数乘两位数的计算方法,解决一些简单的实际问题。
3、经历估算与交流的过程。
教学重点:1、掌握两位数乘两位数(不进位)的乘法的算理。2、2、竖式计算两位数乘两位数。
教学难点:两位数乘两位数的乘法竖式的计算。
教学准备:课件
学生准备:复习旧知识,预习新知识。
教学设计流程:
一、回顾复习,引入新课
1、师:上一节课我们学习了两位数乘以两位数一般乘法,都学习了哪些计算方法?生认真思考,互相交流。
2、出示练习题,学生做集体订正。
二、两位数乘两位数的一般乘法
1、继续以14×12例,
生:12看成10+2,14×110=140,14×2=28,140+28=168
2、肯定并表扬学生的计算。
3、请学生在黑板上演示乘法的竖式计算,生板演。
4、肯定该生的板演。
5、师总结:在竖式计算时,一定要注意数位对齐;个位与个位对齐,十位与十位对齐,大家还有其他的写法吗?
6、老师请生讲述自己的思想,为什么少了一个0。
生:用个位2去乘14,得数的末尾与乘数个位数对齐,再用12的十位上的1去乘14得140。
7、请同学们分组讨论它们有什么联系和区别。
三、总结:这节课我们学习了哪些知识?有什么收获?
和蛋数学有关的教案篇2
活动目标
能手口一致的点数1到4,并能说出总数。
活动准备
经验准备:已经掌握5以内的唱数。
课件准备:《五只小猴子》动画视频;“礼物盒”组图。
活动过程
播放动画视频《五只小猴子》,复习5以内的唱数。
——跟着视频我们一起来复习5以内的唱数吧。
——小心不要唱错数字哦。
操作课件,学习手口一致的点数1-4,并能说出总数。
1.操作课件,数一数各种物体的数量。
——森林乐园开张了,里面有各种各样的'货柜,熊猫奇奇和小伙伴们便相约一起去乐园玩。奇奇来到森林乐园的美食柜,奇奇买了哪些美食?
——甜甜圈一共有几个?蛋糕一共有几个?牛奶有几瓶?(1)
——我们一起来数一数吧。
2.操作课件,数一数各种物体的数量。
——熊猫妙妙遇见了森林乐园的玩具柜,玩具柜里有哪些玩具?
——玩偶有几个?小汽车有几辆?皮球有几个?(2)
——我们一起来数一数。
3.操作课件,数一数各种物体的数量。
——小猫蜜蜜碰见了森林乐园的皮具柜,皮具柜都有哪些东西?
——书包有几个?行李箱有几个?(3)
——我们一起数一数吧。
4.操作课件,数一数各种物体的数量。。
——兔一一看见了森林乐园的饰品柜,饰品柜上有什么?
——眼镜有几个?小镜子有几面?小梳子有几把?(4)
出示组图“礼物盒”,巩固幼儿对4以内点数的掌握。
——奇奇和小伙伴们逛完了森林乐园,开心的回家了,走之前,他们还买了一些礼物。
——一共有几个礼物盒?
——第一个礼物盒装着什么?一共有几个?
——第二个礼物盒装着什么?一共有几个?
——第三个礼物盒装着什么?一共有几个?
教师带领幼儿数一数班级中的物品,在游戏中复习4以内的点数。
——我们班级中一共有几扇门?有几台钢琴?
——班级中一共有几位老师?
——娃娃家里有几个玩偶?几把椅子?
活动延伸
日常活动
教师可以带领幼儿逛一逛幼儿园,数一数幼儿园内大型玩具的数量。
和蛋数学有关的教案篇3
?长方体的认识》是北师大版小学数学五年级下册第二单元的第一节课,主要内容是探索发现长方体(正方体)的基本特征。在我教本课之前,观摩同行执教已有十多遍,观摩过程中也断断续续有些思考困惑,主要集中在几下两点:
1、从平面图形到立体图形,学生的空间观念怎样飞跃?怎样发展学生的空间想象力?
2、为什么会有不少学生将“长方体”说成“长方形”,仅仅是口误吗?
为了解决这些困惑,我提前研读了相关资料(此时我的学生刚进入五年级上学期),通过研读思考,我明白所谓空间观念就是指对物体和几何图形的形状、大小、位置关系及其变化在人脑中的表象及想象。空间观念是由感知觉到概念间的“阶梯”,是建立几何概念、形成空间想象力的基础。《长方体的认识》这节课属于“空间与图形”领域,那么无论这节课的知识点是什么,都要肩负起发展学生“空间观念”的任务。我想起同事们在日常教学中总是会感到学生的空间观念太差,有些学生甚至根本就没有空间观念,而在怎样帮助学生建立空间观念时又会感到很茫然。
虽然学生在一年级已经初步认识了长方体,但本节课才是学生第一次正式地研究立体图形,教材先从生活入手抽象出立体图形,接着在明确面、棱、顶点的基础上引导学生研究长方体(正方体)的特点,最后认识长、宽、高并解决相关实际问题。教材提供的学习材料很丰富,但要想让学生自己在做中学、玩中学,很明显一节课无法完成。于是我又陷入了思考:怎样提高学生的学习兴趣和课堂实效?
为了准确把握学生的学习起点和研究兴趣点,我对一个自然班进行了相关内容的课前调查,具体内容和调查结果分析如下:
问题1:你知道长方形和长方体有什么区别和联系吗?
【意图:为了了解平面图形与立体图形在学生心中的真实建构情况。】
调查结果:
关于长方体和长方形的区别:在63个学生的回答中,只有18人(约占28%)能准确说出平面与立体之分;有28人(约占44%)说长方体可以立起来,但长方形立不起来,这样的回答其实并不准确,但潜意识中要传达的内容也可归为平面与立体之分;还有17人(约占27%)所回答的内容根本不靠谱。
关于长方体和长方形的联系:该问题难度较大,在63人中只有11人(约占17%)能够说出长方形是长方体的一个面。
结果分析:
调查显示学生并没有很好地建构起清晰的立体图形的表象,所以产生了上述的问题。基于此我考虑在认识长方体前可以从立体图形与平面图形之间的联系入手。
问题2:如果让你研究长方体的特点,你喜欢怎样研究?
?意图:旨在了解学生关于长方体的研究兴趣点。】
调查结果:
有12人(约占19%)提到喜欢研究长方体的面。
有6人(约占10%)提到喜欢研究为什么生活中很多物体都是长方体。
有4人(约占6%)提到喜欢研究长方体的构造。
各有3人(约占5%)提到喜欢研究长方体顶点或棱。
有2人(约占3%)提到喜欢研究长方形如何变成长方体。
还有学生在问卷中明确表示:我喜欢拼装长方体,在玩的过程中获得知识,动手做一做、干一干,有时比只看还要好。
结果分析:
调查显示学生的研究兴趣点比较分散,但都很有价值。相比较更多的人喜欢研究面的特点,基于此怎样激发学生研究顶点和棱也是要思考的问题。另外部分学生喜欢研究长方体的构造及拼装长方体对本课的活动设计也很有启发。
在分析了学生的调查问卷和进一步思考之后,我结合自己的思考设计对本节课进行了实践,现将实践教学中的两个片段分析如下:
片段一:
课前活动中每个4人小组准备6根长度相等的小棒,按照要求拼出图形:
任务一:用6根长度相等的小棒拼出1个长方形;
任务二:用6根长度相等的小棒拼出5个正方形;
任务三:用6根长度相等的小棒拼出4个三角形。
学生能够快速准确完成任务一;
能够在片刻思考之后拼出形如“田”字的图形完成任务二;
但却苦苦思索无法完成任务三。此时我出示三棱锥,学生惊喜地发现三棱锥上有4个三角形,紧接着我追问学生:“通过这个活动你有什么感受?”部分学生深有体会地谈到:“图形不只有平面的,还要向立体发展。”而那些没有发表感受的孩子我也能从他们的表情上洞悉他们的内心……
片段一分析:
面对只有17%的学生能说出长方形是长方体的一个面的课前调查结果,我考虑在认识长方体前可以从立体图形与平面图形之间的联系入手进行课前活动。实践验证通过三个拼图形的活动任务安排,使得学生经历了“山穷水尽疑无路,柳暗花明又一村”的思维过程,而学生也在过程中无形地完成了从平面图形到立体图形的认知飞跃,于是在后面的40分钟课堂教学中几乎没有学生将“长方体”误说为“长方形”。
片段二:
在学生观察自己手中形状是长方体的物体并引导其有序数出面、棱、顶点数量的基础上,我直接安排了“制作长方体”的.活动。【小组材料为:卡纸、直尺、剪刀、胶带、信封(内有2个或3个已知的面)。】同时要求学生边制作边思考:长方体面的形状和大小关系?长方体棱的长度关系?
大约10分钟(速度最快的小组只用4分钟)之后,所有的小组都顺利制作出了一个长方体,【如图】且大部分小组都发现了长方体的特点。此时的展示汇报便显得很“酷”:组长拿着自己小组的作品落落大方地在台上对同学们分析讲解他们的发现,教师只需在恰当的时候追问发现的依据,并引导其它小组进行补充即可。
片段二分析:
基于课前问卷中部分学生表示喜欢研究长方体的构造及拼装长方体对我的启发,我安排了这个制作长方体的活动。其实一开始我想让学生将自己手中的长方体剪开进行观察,但考虑到生活中的长方体大都是一些盒子,而盒子在粘和处的多余材料会影响学生的观察,于是我想自己给每个小组制作长方体让学生去“剪”,但此时我想到调查问卷中有学生说:“我喜欢拼装长方体,在玩的过程中获得知识,动手做一做、干一干,有时比只看还要好。”
看着学生的心里话,我很想大胆尝试,但考虑对学生而言“制作长方体”比“剪开长方体”难度要大,所以我在信封中提供了几个已知面。尽管如此,我还是有些担心,毕竟长方体面、棱的特点学生还不知道,就直接放手让其制作,实在是有些冒险,不过最终我决定相信学生,我想当孩子们拿着自己制作的长方体进行汇报的时候内心该有多高兴。实践显示:我的愿望实现了。但此时我却在思考:为什么学生能够在没有研究面、棱的具体特点时就能制作出长方体呢?后来我想到了:因为学生有生活经验,虽然长方体仅仅在一年级的数学书上“昙花一现”,但从一年级到五年级,学生在生活中见过多少形状是长方体的物体啊!学生在生活中玩过多少长方体的玩具啊!……
我如梦初醒,课前自己的担心多余了,但也暴漏了我在研究学生的时候对他们的生活经验读的还不够懂。是啊!学生思维认知的发展不仅仅在数学课堂上,生活经验也是教师在课前需要深刻了解并且读懂的。只有在这样深刻读懂的基础上,学生的思维才能顺利实现飞跃。
至此本该结束了,但学生又在上完课的第二天给了我新的惊喜:他们自己动手制作了一个形状是正方体的盒子。【如图】孩子们说:“老师,我要用这个正方体包装礼物送给你!”
面对此情此景,我感动了!我对孩子们说:“老师不要里面的礼物,只要这个盒子就行。”
亲爱的孩子们,你们的思维是多么丰富奇妙,要想读懂你们,老师定当继续努力!
和蛋数学有关的教案篇4
教学内容:
十几减几(第15页 例2)
教学目标:
1、理解十几减几的算理,学会十几减几的口算方法,正确计算十几减几的题目。
2、体验数学与生活的密切联系和探索学习的乐趣。
教学重点:
掌握十几减几的口算方法,正确地计算十几减几的题目。
教学难点:
能够运用多种方法进行口算并且正确率高
教具准备:
照例2制作的小猫钓鱼动画课件。
教学过程:
一、复习旧知,沟通联系
电脑出示口算
8+5
7+8
7+6
6+8
5+7
5+9
13-9
16-9
18-9
15-9
17-9
14-9
(全班齐练,集体订正)
二、自主探索,学习新知
1、多媒体出示鱼缸内金鱼游动,鱼缸外两只小猫走动观看金鱼的画面。首先请学生说明看到了什么,让学生描述这一生动景象,调动学生的兴趣。
2、多媒体发出声音,同时在左边小猫嘴边出现13条金鱼,花的8条,黑的有几条?的文字。稍停一会儿,多媒体再次发出声音,同时右边小猫嘴边出现13条金鱼,黑的5条,花的有几条?的文字。
3、引导学生讲述两只小猫对话的意思,明确要解决的问题。
4、启发学生根据图意和要解决的问题,想想自己准备用什么方法解决。
5、组织小组讨论,广泛发表自己意见
6、组织全班同学交流,对各种方法进行评议。 在各组讨论的基础上,广泛反映出各种方法。教师要表扬同学想的方法多,能独立发表自己的意见。然后,请同学们就出自己在解决问题时喜欢哪种方法,并说明理由。
7、有导向性的小结 教师以参与者的语言,表明自己根据大家的发言很受启发,乐意运用想加算减的方法,但也要肯定破十减等方法的合理性。
三、巩固计算方法
1、先在书上完成做一做第一题,请同学讲一讲上下两题有什么关系,并举几个例子口头考考其他同学。一方面扩大练习的量,另一方面提高兴趣。
2、为变化方式,可把做一帮第2题做成卡片,以二人找朋友的方式,先说加法题后说减法题,互相练习,活跃气氛,提高练习速度。
四、联系实际,解决问题
练习三第1、2题完全放给学生独立完成。完成后,分别说说解题时自己的想法。也可以分小组,由组长组织同学们交流,交流时要照顾到每一个同学,特别是差一点的同学。教师老师应加强巡视,主动参与一些小组的交流,了解情况,帮助学习有困难的学生。
和蛋数学有关的教案篇5
教学目标
1.理解圆柱的侧面积和表面积的含义.
2.掌握圆柱侧面积和表面积的计算方法.
3.会正确计算圆柱的侧面积和表面积.
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算.
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题.
教学过程
一、复习准备
(一)口答下列各题(只列式不计算).
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征.
二、探究新知
(一)圆柱的侧面积.
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的`侧面积等于底面周长乘高.
(二)教学例1.
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)
2.学生独立解答
教师板书: 3.140.51.8
=1.75l.8
2.83(平方米)
答:它的侧面积约是2.83平方米.
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.
(三)圆柱的表面积.
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.
2.比较圆柱体的表面积和侧面积的区别.
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.
(四)教学例2.
1.出示例2
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答
侧面积:23.14515=471(平方厘米)
底面积:3.14 =78.5(平方厘米)
表面积:471+78.52=628(平方厘米)
答:它的表面积是628平方厘米.
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.
(五)教学例3.
1.出示例3
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积.
3.学生解答,教师板书.
水桶的侧面积:3.142024=1507.2(平方厘米)
水桶的底面积:3.14
=3.14
=3.14100
=314(平方厘米)
需要铁皮:1507.2+314=1821.21900(平方厘米)
答:做这个水桶要用1900平方厘米.
4.教师说明:这里不能用四舍五入法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.
5.四舍五入法与进一法有什么不同.
(1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.
(2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.
三、课堂小结
这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题.圆柱的表面积在实际应用时要注意什么呢?
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.