六年级百分数应用教案8篇

时间:2022-11-16 作者:Iraqis 备课教案

写教案是教师提高自己教学能力的重要方式之一,教案在拟订的时候,我们务必要注意讲授内容要点,以下是范文社小编精心为您推荐的六年级百分数应用教案8篇,供大家参考。

六年级百分数应用教案8篇

六年级百分数应用教案篇1

教学目标:

1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。

3、在解决问题的过程中体会百分数与现实生活的密切联系。

教学重点:

在具体的情境中理解“增加百分之几”或“减少百分之几”意义。

教学难点:

能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

教学关键:

充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。

教学过程:

一、复习引入

1、复习

师:关于百分数,你们已经学过那些知识?

指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书

百分数的意义

小数、百分数、分数之间的互化

百分数的应用

利用方程解决简单的百分数问题

2、引入

师:从这节课开始,我们继续学习有关百分数的知识。

二、探索新知

1、创设情景,提出问题

盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

根据这一情景,你能获得哪些信息?

指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。

师:你认为“增加百分之几”是什么意思?

指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”

师:你能独立解决这一问题么?那就请你试一试。

2、自主探索解决问题

(1)自主探索。

让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。

(2)合作交流。

指名板演,学生可能会提供以下两种算法

方法1:(50—45)÷45

=5÷45

≈11%

方法2:50÷45=111%

111%—100%=11%

全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识

方法1:先算增加了多少立方厘米,再算增加了百分之几。

方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。

3、即时练习。

先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。

三、巩固练习

指导学生完成课本练一练中的第1题至第5题。

免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。

六年级百分数应用教案篇2

教学目标:

1.通过多种途径查找资料,经历走进生活、收集整理、交流表达等过程,让学生

了解有关储蓄的知识的同时培养学生搜集处理信息的能力。

2.结合百分率的知识,运用调查、观察、讨论、分析数量关系等方式,学习利息的计算方法,并运用所学的数学知识、技能和思想来解决实际问题。

3.通过策划理财活动,让学生感受数学知识服务于生活的价值,培养科学理财的意识。

教学重点:利息的计算方法

教学难点:税后利息的计算。

设计理念:本课除了要让学生掌握利息的计算方法,更重要的是要让学生结合百分率的知识,通过策划理财活动,让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。

教学步骤:

一、情境导入

1. 提问:你家中暂时用不到的钱怎么处理的?(课前布置同学们向自己的爸爸妈妈了解家中暂时用不到的钱怎么处理的)

你们知道为什么要把积余下来的钱存到银行里吗?(明确:人们把钱存入银行或信用社,这叫做存款或者储蓄。这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。)

2. 关于储蓄方面地知识你还了解多少?(全班交流自己收集到信息)

根据学生交流地情况摘其要点板书:

利息 本金 利率

多媒体出示告诉你:存入银行的钱叫做本金,取款时银行除了还给本金外,另外付给的钱叫做利息。利息占本金的百分率叫做利率。按年计算的叫做年利率,按月计算的叫做月利率。

出示利率表。(略,同书上第5页利率表)

师:你从这张利率表上能获得哪些信息?说说年利率2.52%的含义。你认为利息与什么有关?怎样求利息?(学生讨论)

根据学生的回答板书:利息=本金利率时间

二、教学例3

1.出示例3。读题后明确,二年期的利率应该就是表格中对应的二年存期的利率,不是一年期的利率2。

师:要求利息,需要知道哪些条件?你会列式求利息吗?(试着做一做,集体订正)

2.教学试一试

(1)亮亮实际能拿到这么多利息吗?为什么?(请了解利息税的同学解释)

教师再说明:这里求得的利息是税前利息,也叫应得利息。但是根据国家税法规定,从1999年11月开始,储蓄所得的利息应缴纳20%的利息税,由储蓄机构代扣。税前利息中扣掉利息税后余下的部分即是自己实际得到的利息,即税后利息,也叫实得利息。购买国家债券、教育储蓄不缴纳利息税。

这里的20%是什么?

你觉得应该怎样计算税后利息呢?可以先算什么?用计算器计算亮亮实得利息是多少元?(学生用计算器计算)

(2)小结:一般我们从银行取出来的都是税后利息,所以在多数计算中最后要将利息税减掉。

(3)引申:如果问题问亮亮到期一共可取出多少元?这里的一共是什么意思,包含哪些内容。(明确可取出多少元:本金+税后利息)

这个问题由你来解答。

三、巩固练习

1.完成练一练。

应得利息怎样求?实得利息怎样求?(学生列式解答)

二者的区别是什么?实得利息是应得利息的百分之几?(组织学生讨论)

2.做练习二的第5题。

提醒学生教育储蓄不需缴纳营业税。这里的本金和利息一共多少元是什么意思?(指名学生回答,集体订正)

3.理财我能行

谈话:你们对家中的存款情况了解多少?能说给大家听听吗?当然该保密的就不要说了。(学生交流)

学生交流后出示下面题目(同时出示利率表)

(1)张明家有5000元计划存入银行三年,张明的妈妈想请我们班的同学帮助算一算,是存定期三年合算?还是存定期一年,然后连本带息再转存合算呢?(学生说出自己的想法)

(2)如果你有1000元,根据你家的实际情况,你打算怎样投资?请你设计一个理财方案。

四、全课小结

这节课我们学习了什么知识?通过本节课的学习,你学会了什么?

师:通过今天的学习,希望同学们有意识地养成勤俭节约,计划消费的习惯,并能把所学知识应用到实际生活中,发挥其价值。

五、布置作业(两道实践题让学生在家长的陪同下到银行去储蓄,从实践中认识储蓄)

1.到银行存压岁钱;

2.找一份存折或存单,看懂上面的每一栏,并从上面找到本金、利率、时间,能计算到期后这份存折(存单)一共可取出多少元?

六年级百分数应用教案篇3

教学目标:使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题,培养分析能力,发展学生思维。

教学策略:

1.教学例2中(涉及三个数量的乘法应用题)教师可以先让学生想一想这道题怎样用线段图表示它的数量关系呢?自己试着画一画,可以提示一下:题里有小亮、小华和小新的储蓄三个量,所以可以三条线段来表示题里的数量关系。学生画完后指名说一说是怎样画的,教师再根据学生的回答,在黑板上画出线段图。在画图的过程中教师还可以提一些问题,使学生明确画线段图的思考方法。

2、教师要注意指导学生学会用线段图表示已知条件和问题。

(1)先画一条线段,表示谁储蓄的钱数?为什么?

学生回答后,教师画线段图,学生在练习本上画。

再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

教师画并分析数量关系。

让学生说明确小新储蓄的钱数,必须先求小华储蓄的钱数。确定每一步的算法并列式计算。

①求小华储蓄的钱数怎样想?

引导学生回答:根据小华储蓄的钱数是小亮的

把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

(元)

②求小新储蓄的钱数怎样想?

引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

(元)

把上面的分上步算式列成综合算式,该怎样列?

(元)

3、注意引导学生与前一节所学的一步计算的分数乘法应用题比较归纳有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?明确解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

4.要培养学生独立分析、解答的良好习惯,对学习有困难的学生进行个别辅导。集体订正时,指名中等生说一说是怎样想的,仍然要强调把什么看作单位1。如果有必要,可以画线段图帮助学生理解,但不要求学生画图。

六年级百分数应用教案篇4

教学目标

1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题 ,提高解决实际问题的能力。

2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

教学重点

本金、利息、利率的含义。

教学难点

计算定期存款的利息。

教学过程

一、师生交流

课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

师:同学们到银行去调查利率并了解有关储蓄的知识。哪个小组愿意和大家交流你们的调查情况。

让学生汇报调查的情况,并出示课本的银行存款利率表。

师:同学们真了不起,了解了这么多。大家知道,钱存进银行里,不但能支援国家建设,还能得到利息。怎样存能得到的利息多一些呢?下面老师和大家一起来探讨。

二、探讨新知

1、计算公式

师:我们去银行存钱,存进银行的钱,叫做本金。取款时银行多付的钱叫做利息。利息占本金的百分比叫做利率。银行存款的利率,国家会根据经济发展的情况有所调整,大家调查的银行的利率和我们书上的银行的利率,比较一下就会发现不同。

利息的多少由存款的多少、利率的高低和存款的时间的长短有关系。

请学生讨论利息的算法,老师适当的提示。

板书 利息=本金×利率×时间

全班齐读公式。

师:要求利息就必须要知道什么?

2、计算利息

师:笑笑和淘气知道你们会计算利息的方法,想请你们帮他俩算一算,他们可以得多少利息,你们愿意不愿意帮啊?下面我们一起来算。

出示题目:

笑笑说:300元压岁钱在银行存一年其整存整取,到期时有多少利息?

淘气说:我存三年期的300元,到其实有多少利息? 师:笑笑存的本金是多少?存款的时间是多长?利率是多少?

怎样算?淘气呢?

学生回答后,师板书。

笑笑得到的利息:300×2.52%×1=7.56(元)

淘气得到的利息:300×3.69%×1=33.21(元)

师:笑笑和淘气存同样多的钱,因为存的时间长短不同,利率也就不同,所以得到的利息也不同。

师:同学们在调查中看到了利息税,从1999年11月1日起,个人在银行存款所得利息应纳税,这就是利息税。国家将这部分税收用于社会福利事业。从1999年11月1日至20xx年8月14日,利息税是利息的20%,20xx年8月15日至20xx年10月7日,利息税是利息的5%,从20xx年10月9日起,免收利息税。如无特殊说明,今后我们在计算时不要求计算利息税。

三、巩固练习

1、李老师把20xx元钱存入银行,整存整取五年,年利率按4.14%计算。到期时,李老师的本金和利息共有多少元?

先让学生自己计算,在全班讲评。

2、光明小学为400名学生投保“平安保险”,保险金额每人5000元,保险期限一年。按年保险费率0.4%计算,全校共应付保险费多少元

先提醒学生说出保险金额、年保险费率的含义,再让学生计算。

四、课后总结

1、同学们现在已经知道了把压岁钱存到银行可以获得利息,而存款方式有好几种,今后打算怎么处置自己的压岁钱呢?

如果把它存到银行,该怎样存呢?

建议学生课后亲自到银行存一次钱。

2、这节课你学到了哪些知识?

五、布置作业

六年级百分数应用教案篇5

在六年级(上册)认识百分数里,教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。在此基础上,本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以及根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。编排了六道例题、四个练习,把全单元的内容分成四段教学,最后还有单元的整理与练习。

1.以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。

解答例1的关键是理解问题的具体含义,教材借助直观的线段图,让学生思考实际造林比原计划多百分之几应该怎样理解。明确这个问题是求实际造林面积超过原计划的公顷数相当于计划造林公顷数的百分之几,从而产生先算出实际造林比原计划多4公顷,再求4公顷是计划造林面积16公顷的百分之几这样的思路。或者先算出实际造林面积是原计划的125%,再得出实际造林比原计划多25%的结论。两条思路、两种算法都是把原计划造林公顷数看作单位1(即100%),在线段图上能清楚地看到,两种解法最终都是求实际造林比原计划多的部分是原计划的百分之几。练习一第1题利用已知的是百分之几求增长百分之几,或者利用已知的增加百分之几求是百分之几,通过百分数之间的相互转化,进一步理解增加百分之几的含义,还带出了下降百分之几这个概念。

实际造林比原计划多百分之几与原计划造林比实际少百分之几是两个不同的问题,前者是实际造林比原计划多的公顷数与原计划造林公顷数相比,后者是原计划造林比实际造林少的公顷数与实际造林公顷数相比,解决两个问题的算式中,被除数的意义不同,除数也不同。教材编写试一试的目的就是要突出这些不同,要求教师在适当的时候组织学生将试一试和例题的计算结果进行比较,研究为什么得数不同,进一步理解这两个问题的含义与数量关系。练习一第5题里,第(1)、(2)题的条件相同,问题不同,第(2)、(3)题的条件不同,问题也不同。通过解题与比较,能使学生更正确地理解是百分之几与高百分之几的含义。第7题分别求巧克力的单价比奶糖、水果糖和酥糖贵百分之几,要依次把巧克力比奶糖、水果糖、酥糖贵的单价与奶糖、水果糖、酥糖的单价相比,反复体验求一个数比另一个数多百分之几的解题思路与方法。第8题以表格形式呈现求百分数的问题,首次把百分数应用于统计表中。

2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。

例2结合纳税教学求一个数的百分之几是多少的问题,先找到数学问题60万元的5%是多少,然后把求一个数的几分之几是多少的经验迁移过来,得到求一个数的百分之几是多少,也用乘法计算,于是列出算式605%。在上面的过程中,关键在于寻找数学问题,只要理解了缴纳的营业税是60万元的5%,学生就会想到用乘法计算,把求一个数的百分之几纳入原有的经验系统,从而发展认知结构。在计算605%时,可以把5%化成5/100,也可以化成0.05,前一种算法又一次体验了求一个数的百分之几与求一个数的几分之几是一致的,用乘法计算是合理的。在练一练里,由于6.25/100的计算比6.20.05麻烦,所以计算含有百分数的乘法一般把百分数化成小数。

练习二第1~4题是配合例2编排的,要引导学生抓住求什么的百分之几是多少进行思考。如,第1题是求门票收入的3%,因此接待游客18万人次是多余的信息。又如,第4题是求月收入超过1600元的部分的百分之几是多少,因此要先算出应纳税部分的元数,并找到相应的税率。

例3计算利息,应用求一个数的百分之几的方法解决稍复杂的实际问题。由于多数学生缺少这方面的生活经验,因此教材在底注中解释了本金、利息、利率的含义,并给出了计算利息的方法:利息=本金利率时间。要结合例题里的表格,让学生知道利息和本金、年利率、存期有关,一般情况下,本金越多,存期越长,年利率越高,到期后获得的利息就多。还要让学生知道,存期一年,到期可得的利息是本金的2.25%;存期二年,每年的利息是本金的2.70%这样,学生就能理解计算利息公式里的数量关系。

试一试利用例3求得的应得利息,继续计算缴纳利息税以后的实得利息。要让学生懂得实得利息是应得利息扣除缴纳的利息税以后剩下的利息,明白为什么先算出利息税是多少元的道理。从例题到试一试的全过程,就是我国现行的银行存款实得利息的计算方法:先根据本金、存期和利率算出应得利息,再扣除缴纳的利息税得到实得利息。学生完成练一练和练习二第5~7题就有思路了。要注意的是,计算实得利息的步骤比较多,练一练和第6、7题都采用连续提问的形式,适当降低了解题时的思维难度。

3.列方程解决已知一个数的百分之几是多少,求这个数的实际问题。

例4教学与折扣有关的问题,也是百分数的实际应用。教材先对打折作了具体的解释,让学生明白几折就是百分之几十,知道八折就是80%,从而把打折的实际问题与百分数的应用联系起来。原价和实际售价有什么关系是这道例题的教学重点,要从原价打八折出售得出原价80%=实际售价。这个数量关系能起两点作用,一是进一步理解打折扣的含义:图书按八折出售,实际售价只是原价的80%。二是形成求《趣味数学》原价的解题思路,在数量关系式里已知积与一个因数,求另一个因数,可以列方程解答。本册教材里,已知一个数的百分之几是多少,求这个数的问题都列方程解答,充分利用百分数的意义,加强对百分数乘法的理解,避免人为地把实际问题分类型,体现了各种百分数问题的内在联系。求出《趣味数学》的原价15元以后,对学生提出检验的要求,而且采用了两种检验方法。依据折扣的含义,既可以用实际售价除以原价,看是不是打了八折;也可以看原价的80%是不是实际售价12元。这样安排,不仅检验了原价15元是正确的,还多角度表现了原价、实际售价、折扣三者的关系,在进一步理解折扣的同时,沟通了三种简单的百分数问题的`联系。练一练求《成语故事》的原价,也要求检验,让学生独立经历与例4同样的学习过程,再次体会问题中的数量关系。

练习三的编排大致分成两段,第1~4题是第一段,在理解折扣含义的基础上正确应用数量关系。第1、2题分别求打折后的实际售价与打折前的原价,都可以根据原价折扣=实际售价来解答。第4题求折扣,教材先让学生回答第3题,把按原价的百分之几出售改说成打几折出售,体会求几折只要求百分之几,为第4题作了铺垫。第5~9题是第二段,仍然以求实际售价或求原价为主要内容,灵活应用数量关系。第5题分别求实际售价与实际比原来便宜的元数,这里有简单问题与稍复杂问题的比较。第6题分别求实际售价与原价,是两种折扣问题的比较。第7、8题让购物问题更复杂一些,有利于学生在变化的问题情境中把握基本的数量关系。

例5和例6是较复杂的已知一个数的百分之几是多少,求这个数的问题,都列方程解答。两道例题分别把相并关系和相差关系作为列方程的相等关系,虽然相并与相差是学生早就认识的数量关系,但在复杂的百分数情境里不容易看到。为此,例题利用线段图给予直观帮助,让学生在例5的线段图右边的括号里填36,体会男生人数与女生人数合起来是美术组的总人数。例6在线段图上突出十月份比九月份节约用水的那一段,引导学生注意两个月用水量之间的相差关系。教材完整地写出两道题的等量关系,让学生感受等量关系式右边美术组的总人数、十月份用水的吨数都已知,在这样的情况下,列方程是解题的有效方法。虽然有了等量关系,但列方程还会遇到一个问题,即为什么设男生人数为x,设九月份的用水量为x。要引导学生抓住题目中已知的那个百分数,分析它的意义,体会这样的设句是合理的,不仅用x表示了单位1的数量,还很容易用含有字母的式子表示出女生人数,表示出十月份比九月份节约用水的吨数。

两道例题列出的方程里都有两个x,还含有百分数,解方程时要先化简方程的左边,再应用等式的性质。例题呈现了解方程的过程,并在练习四里安排三道解方程的习题,提醒教师要帮助学生正确地解方程。检验不是把未知数的值代入方程,而是要检验得数是否符合实际问题里的数量关系。具体地说,例5要检验男、女生的人数之和是不是36,还要检验女生人数是不是男生的80%。例6要检验十月份用水的吨数是不是比九月份节约20%,或者检验九月份的用水量节约20%,是不是440立方米。只有符合实际问题的得数才是正确答案。

练一练要先说数量关系再解答,突出寻找等量关系是解答这些题的关键,也是指向解题难点的基础训练。要引导学生从分析题目里已知的那个百分数开始,有条理地思考。如第11页练一练,种蓖麻的棵数是向日葵的75%,向日葵的棵数是单位1的量,蓖麻的棵数是单位1的75%,它们一共有147棵,等量关系就是蓖麻的棵数+向日葵的棵数=147;向日葵比蓖麻多21棵,等量关系就是向日葵的棵数-蓖麻的棵数=21。再如第12页练一练,美术组的人数比舞蹈组多20%,舞蹈组的人数是单位1的量,美术组比舞蹈组多的人数是单位1的20%,等量关系是舞蹈组的人数+美术组比舞蹈组多的人数=美术组的人数。解答练习四里的实际问题,也应经常让学生说说数量关系。

练习四第1~4题配合例5编排,第4题第(1)题曾经在六年级(上册)教过,那时也是列方程解答的,从第(1)题到第(2)题带出了稍复杂的分数问题。整数、分数、百分数都能表示两个数量间的倍数关系,第4题把貌似不同的问题组织在一起,凸现这些问题在本质上的联系。第5~9题是配合例6编排的,在第9题里把简单的百分数问题和较复杂的百分数问题编排在一起,可以适当进行比较。第10~16题是一堂练习课的内容,第11~13题是百分数的问题,进一步熟悉两道例题的解题思路,第14~16题是三道已知一个数的几分之几,求这个数的问题,促使例题的思考方法水平迁移。在六年级(上册)只教学稍复杂的分数乘法问题,另一些分数实际问题则安排在这里教学。

教学例4、例5、例6以及练习里的内容,要更新观念,改变习惯了的教学方法。首先是不要求学生识别分数乘法与分数除法两类不同的问题,尤其不要机械套用已知单位1用乘法,单位1未知用除法这些所谓的规律。过去这样教的解题效果虽好,但严重制约了学生的思维,把分析数量关系的过程变成了依据个别词语的简单判断。改进教法要加强对分数、百分数意义的理解,充分利用求一个数的几分之几是多少这个数量关系,合理选择列算式还是列方程解题。其次,不必进行有关分率与百分率的联想训练。如从用去25%想到还剩(1-25%);从第一天看了全书的1/5,第二天看了全书的1/6想到两天看了全书的1/5+1/6,这些联想是为列除法算式服务的。要引导学生充分挖掘和利用实际问题里的相并、相差等最基本的数量关系,作为列方程或列算式的依据,让小学与初中的教学相衔接,为学生的后继学习打下良好的基础。

六年级百分数应用教案篇6

教学内容:

百分数的应用(一)教材第23——24页

教学目标:

1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

2、能计算出实际问题中“增加百分之几”或“减少百分之几”。提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

教学重点:会计算实际问题中“增加百分之几”或“减少百分之几”。

教学难点:在具体情境中理解 “增加百分之几”或“减少百分之几”的意义。

教学过程:

一、 创设情境

1、 关于百分数,我们已学过那些知识?

根据学生回答,板书如下:

百分数的意义

小数百分数分数之间的互化

百分数的应用

利用方程解决简单的百分数问题

2、 引入:从这节课开始,我们继续学习有关的百分数的知识。

板书课题:百分数的应用(一)

二、 新知探究

问题引入:盒子里有45立方厘米的水结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

1、 引导学生认识“水结成冰,体积会增加”这种物理现象,并找出题中的条件与问题。

2、 你认为“增加百分之几”是什么意思?

指导学生画线段图理解“增加百分之几”的意思是:冰的体积比原来水的体积增加(多)的部分是水的百分之几

3、 学生自主解决问题,师巡视,个别指导。

4、 合作交流:

方法一:(50-45)÷45 方法二: 50 ÷45 ≈ 111%

=5÷45 111%-100%≈11%

≈11%

指名学生说出自己具体的想法:

方法一:先算增加了多少立方厘米,再算增加了百分之几。

方法二:先算冰的体积是原来水的体积的百分之几,再算增加百分之几。

5、 即时练习

指导学生完成第23页“试一试”。

重点引导学生理解“降低百分之几”的意思是降低的价钱数目占原来价钱的百分之几。

三、 总结:

求一个数比另一个数增加或减少百分之几的应用题的方法:

(1) 先求一个数比另一个数增加或减少的具体量,再除以单位“1”。即:两数差额÷单位“1”

(2)先求一个数是另一个数的百分之几,再把另一个数看作单位“1”即100%根据所求问题两者用减法运算。

四、练习提高

指导学生完成第24页练一练第1,2,3,4,5题。

六年级百分数应用教案篇7

教学内容:

第十一册,百分数的应用。

教学目标:

1、通过对比,使学生沟通分数应用题和百分数应用题的联系和区别,使学生理解和掌握“求一个数是另一个数的百分之几”的应用题的解题思路和方法。

2、让学生在自主探索、合作交流的过程中理解百分率的意义,探求百分率的计算方法并学会计算。

3、让学生在具体的情境中感受百分数来源于实际,培养学生用数学的眼光观察生活的意识,在应用中体验数学的价值。

教学重点:

掌握简单的百分数应用题的计算方法。

教学难点:

探索百分率的意义和计算方法。

教学过程:

一、开展活动,产生问题。

1、师:同学们,上课前老师想问大家一个问题。土豆能浮在水上吗?

(边说边做)老师这里有一杯凉开水,另一杯凉开水中有一些盐,如果教师把同一只土豆分别放入杯中,观察发现了什么?

2、师:你能根据老师刚才的实验,提出相关的数学问题吗?

生提,师随机板书,如:盐占盐水的几分之几?这个问题同学们会解答吗?

(板书提供数据:盐80克,水170克)

现在能解答吗?指名口答。80÷(170+80)=80÷250 =8/25

3、小结:这是我们以前学过的求一个数是另一个数的几分之几的应用题,这类题的解答方法是──一个数÷另一个数。

二、探索新知

(一)如果求“盐占盐水的百分之几”该怎样解答呢?(生尝试)

1、与前面的算法比较一下,你想说什么?(引导学生比较异同)

2、师小结:它们的解法是相同的,都是用一个数÷另一个数,只是这类百分数应用题的结果要用百分数表示。

(二)百分率

1、师:通过刚才的计算,我们知道盐占盐水的32%。生活中,盐占盐水的百分之几一般叫含盐率。(板书:含盐率)揭题,今天这节课我们就来学习百分率的应用。(板书课题)

反问:什么叫含盐率?怎样求含盐率?

师:计算百分率的公式通常这样写:含盐率=盐的重量/盐水的重量×100%(板书)

同学们,对这个公式有什么不清楚的地方吗?(解释:为什么×100%)

2、出示例题

一号杯中:倒入200克清水中放入10克糖。

二号杯中:倒入200克清水中放入20克糖。

师:你会求这两杯糖水的含糖率吗?含糖率=糖的重量/糖水的重量×100%(板书)

3、想想这两杯糖水的口味会怎样?谁愿意尝一尝。为什么?

因为含糖率9.5%比0.5%大,说明了什么?含糖率越高,糖水就越甜。

三、知识迁移、完善揭题。

1、师:百分率在我们生活中是无处不在的,除了含糖率、含盐率外,你还能举出一些吗?老师这里也收集了一些。

读一读

实行科学种田,播种前需要进行种子发芽实验,计算发芽率;

用花生仁、油菜籽等榨油,可计算出油率;

每次考试后,老师要了解本班的及格率、优秀率;

护林工人了解小树苗的成活情况,可计算成活率;

工厂检验所生产零件的质量情况,需计算合格率;

根据学生每天的出勤情况,可计算出勤率;

调查学生作业的完成质量,可计算正确率;……

2、小组活动:请大家组成四人小组,每人挑一个你感兴趣的百分率说说它表示什么意思,并尝试着像老师一样编一道求百分率的应用题,并算出结果。学生讨论后交流。

四、比赛、调查、应用延伸

(一)只列式,不计算

1、加工400件产品,经检验,合格的有390件,求这批产品的合格率。

2、六(1)班今天有48人到校,2人事假,求六(1)班今天的出勤率。

3、某电视台调查了500个家庭,有462个家庭收看该电视台的节目,求该电视台的收视率。

(二)判断

(1)我校五年级共有100名学生,今天缺勤2人,今天五年级学生的出勤率为98%。

(2)林场种了杨树100棵,成活了98棵,杨树的成活率是98%棵。

(3)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。

(4)工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

(5)小麦的出粉率达到100%。

六年级百分数应用教案篇8

教学目标:

1、使学生初步掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能正确解答此类应用题。

2、进一步提高分析、比较、解答应用题的能力,培养认真审题的好习惯。

教学重点:

掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答。

教学难点:

掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答。

教学过程:

一、复习准备

(一)求一个数是另一个数的百分之几用什么方法?解答这类应用题的关键是什么?

(二)口答,只列式不计算。

1、5是4的百分之几?4是5的百分之几?

2、甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的是乙数的百分之几?

3、甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的是甲数的百分之几?

(三)应用题

盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

冰的体积是原来水的体积的百分之几?

(四)引入新课

如果把、问题改为:冰的体积比原来水的体积增加了百分之几?该怎样解答呢?今天我们继续学习百分数应用题。

二、新授教学

(一)教学例题

例、盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

冰的体积比原来水的体积增加了百分之几?

1、读题,理解题意。

2、比较:例题与复习题有什么异同?

3、讨论:“冰的体积比原来水的体积增加了百分之几?”什么意思?(画图理解)

教师板书:多出来的部分占原计划的百分之几.

4、列式计算

(50—45)÷45 =5÷45 ≈0.111 =11、1%

5、思考:这道题还有其他解法吗?

50÷45—1 ≈111、1—1 =11、1%

提问:为什么要减去1?

(二)反馈

1、把例题中的问题改成“水比冰体积少百分之几?”该怎样解答?

思考:这道题与例题有什么相同的地方?有什么不同的地方?

2、一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林多百分之几?

3、一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林少百分之几?

三、巩固练习

(一)分析下面每个题的含义,然后列出文字表达式。

1、今年的产量比去年的产量增加了百分之几?

2、实际用电比计划节约了百分之几?

3、十月份的利润比九月份的利润超过了百分之几?

4、1999年的电视机价格比1998年降低了百分之几?

5、现在生产一个零件的时间比原来缩短了百分之几?

6、十一月份比十二月份超额完成了百分之几?

(二)只列式不计算。

1、某校有男生500人,女生450人,男生比女生多百分之几?

2、某校有男生500人,女生450人,女生比男生少百分之几?

3、一种机器零件,成本从2.4元降低到0.8元,成本降低了百分之几?

4、一种机器零件,成本从2.4元降低了0.8元,成本降低了百分之几?

5、某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

(三)思考

男生比女生多20%,女生就比男生少()。

四、课堂小结

通过今天的学习,你有哪些收获?

五、课后作业

1、我国第一大岛台湾岛面积约35760平方千米,第二大岛海南岛面积约是32200平方千米,台湾岛的面积比海南岛大百分之几?(百分号前面的数保留一位小数)

2、工程队原计划一周修路24千米,实际修了28千米,实际修的占原计划的百分之几?实际比原计划多修百分之几?