百分数的应用三教案8篇

时间:2022-09-30 作者:Lonesome 备课教案

教案是老师为了调动学生积极性事先完成的文字载体,写好教案后,在接下来的教学工作中起着相当大的作用,以下是范文社小编精心为您推荐的百分数的应用三教案8篇,供大家参考。

百分数的应用三教案8篇

百分数的应用三教案篇1

1、教学目标

1、在活动中将已学的“比的认识”进行梳理、分类、整合,从而体会知识间的内在联系。

2、进一步理解比的意义,能够正确熟练化简比、求比值,并能合理地应用比的意义解决一些实际问题。

3、向学生渗透对各类知识点的整合、梳理意识,培养学生科学的学习方法。

2、新设计

1、串联信息,整合单元复习内容。

2、沟通联系,自主搭建知识网络。

3、聚焦对比,分析说理易混知识。

4、数形结合,提炼方法优化思路。

3、学情分析

厦门市群惠小学六(4)班学生善于思考,思维活跃,勇于表达自己的观点。为了更好地以学定教,我通过前测,对学生平时学习中的薄弱知识进行查缺:求比值和化简比混淆了;比的应用中,没有掌握解答的关键与诀窍。针对学生学情和复习目标,本课设计融入四元素:激趣+梳理+补缺+挑战,并利用电子白板的优势,引导学生自主复习,掌握知识,培养能力。

4、重点难点

教学重点:对本单元的知识进行梳理,使之系统化、条理化,学生能够熟练的运用比的知识解决实际问题。

教学难点:经历知识的整理过程,建构知识网络图;能够熟练比的化简以及应用比的知识解决实际问题。

百分数的应用三教案篇2

一、教学内容

比的应用的练习课。(教材第55~56页练习十二第3~7题)

二、教学目标

1、复习巩固按比分配问题的解题方法。

2、进一步培养学生应用知识解决实际问题的能力。

三、重点难点

重难点:会灵活运用按比分配问题的解题方法解决实际问题。

教学过程

一、基础练习

1、师:比的意义和基本性质是什么?(点名学生回答)

2、教材第55页练习十二第5、6题。

(学生独立完成,集体订正)

3、师:按比分配问题有几种解题方法?是什么?(同桌之间说一说)

引导学生回顾按比分配的两种解题方法。

二、指导练习

1、教学教材第55页练习十二第3题。

(1)组织学生观察图画,理解题意,了解信息。

(2)组织学生小组讨论,如何解决问题。

教师巡视,并引导学生理解每个橡皮艇上有1名救生员和7名游客,也就是救生员和游客的人数比是1∶7。

(3)交流后,学生独立完成,集体订正。

百分数的应用三教案篇3

稍复杂的分数除法应用题

教学目标:

1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题

题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教具准备:多媒体课件

教学过程:

一、旧知铺垫(课件出示)

小红家买来一袋大米,重40千克,吃了,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新知探究

1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

(1)吃了是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:

买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。

解:设买来大米x千克。

x-x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

(3)学生试画出线段图。

(4)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(5)根据等量关系式解答问题。

(6)解:设航模小组有χ人。

χ+χ=25

(1+)χ=25

χ=25÷

χ=20

答:航模小组有20人。

三、课堂小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、当堂测评

练习十第4、12、14题。

学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。

设计意图:

继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。

教学后记

百分数的应用三教案篇4

教材说明

综合应用“合理存款”是在完成了第六单元“百分数”的教学之后安排的,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识,并综合运用这些相关知识解决实际问题。通过这个活动,一方面可以使学生更多地接触实际生活中的百分数,认识到数学应用的广泛性;另一方面可以促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。

“合理存款”活动共由以下四个部分组成。

1.明确问题。

本活动主要围绕:“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开的。该问题中蕴含着几个很关键的信息:本金、可存款年限以及资金用途。

2.收集信息。

明确问题后,需要收集与该问题相关的信息。教材中呈现了通过去银行咨询以及查阅相关规定的方式获得的信息:(1)人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率等。(2)教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。(3)国债也是免征利息所得税,有三年期和五年期的……

3.设计方案。

根据上述收集到的信息,让学生设计具体的储蓄存款方案。定期储蓄存款的方案可填在第111页第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

4.选择方案。

从上述各种可行的方案中选取收益,即化的方案进行合理存款,并计算出到期后总共的收入。

教学建议

1.这部分内容可用1课时进行教学。

2.本活动涉及的调查与收集信息工作,老师可要求学生在课前完成。学生可以通过网络、电话以及银行咨询等多种渠道获得人民币储蓄、教育储蓄以及国债的利率和相关规定。

3.课堂教学时,老师可结合要解决的问题帮助学生进一步明确本活动中存款的本金、可存期限以及这笔存款的用途。这可以促使学生整理信息时更有针对性,特别是为设计教育储蓄存款方案提供合理的理由。

4.在明确学生已经收集到必需的信息之后,可让学生以小组合作学习的方式共同设计方案。教材第一张表格中给定期储蓄存款方案预留了三行,实际上学生在具体设计时可能不仅仅只有三种,如一年期存6次,二年期存3次,三年期存2次,先存五年期再存一年期……多种方案。老师对学生设计的不同方案要恰当的给予鼓励,不能不加指导让学生盲目地停留在对定期储蓄存款方案的罗列中。

5.在对教育储蓄和国债方案的设计之前,建议老师先引导学生充分了解和明确收集来的关于教育储蓄和国债的相关信息与规定。例如:(1)2006年发行的凭证式一期国债,三年期利率为3.14%,五年期利率为3.49%。(2)一年期、三年期教育储蓄按开户日同期整存整取定期储蓄存款利率计息,六年期按五年期整存整取定期储蓄存款利率计息;教育储蓄储户凭存折和学校提供的正在接受非义务教育的学生身份证明(以下简称“证明”)一次支取本金和利息,每份“证明”只享受一次优惠。

6.教师启发学生通过讨论逐步认识到,由于教育储蓄和国债都免征利息税,所以相对同期的定期存款,它们的收益会相对较高。但由于国债和教育储蓄对存期和提取具有一定地限制,所以为了实现本笔存款收益化,可能的方案主要有以下几种:(1)教育储蓄存六年。(2)先买三年期国债,到期后再买三年期国债。(3)先买三年期国债,到期后再存三年期教育储蓄。(4)先买五年期国债,到期后再存一年期教育储蓄。在连续存款的方案中,连续存款时仍然只存本金一万元,不包括已经获得的利息(具体见下表)。

1.教师请各组同学选派代表,交流本小组选择的收益的方案,并具体算出到期的收入。这里需要说明的是,本活动在设计方案时国债利率均以2006年发行的凭证式一期国债的年限和利率为准,教育储蓄也以当前的规定和利率为准。实际上,国债以及教育储蓄的利率在不同时期可能会有所调整,但无论利率如何变化,方案设计的思路是一致的。教学时老师可根据当时的情况进行具体的调整。

2.教师在与全班同学共同反馈结果后,还可让学生充分讨论,如果自己有钱,想怎样投资,理由是什么,培养学生的投资意识。

百分数的应用三教案篇5

教学内容:

p29、p30 “百分数的应用(四)”

教学目标:

1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。

2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

教学重点:

进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。

教学过程:

一、谈话引入。

课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

师:课前同学们到银行调查了有关储蓄的知识,哪个小组愿意和大家交流你们的调查情况。

组1:我知道人们把钱放到银行是有好处的。可以得到一些利息。

组2:现在银行可以办各种储蓄卡,如果到外地出差,不用带现金,只带卡就可以了,既方便又安全

组3:我们调查了存款的年利率。

存期(整存整取)

年利率 %

一年 2.25

二年 2.70

三年 3.24

五年 3.60

组4:我们知道国债和教育储蓄不收利息税,其他的要交20%的利息税。

师:同学们真了不起,了解了这么多。老师知道同学们在过年的时候,得到了一些压岁钱,你觉得怎样处理这些压岁钱呢?

生:当然是存到银行了。

二、探究思考。

师:是啊,存到银行不但能支援国家建设,到期还能得到利息。根据存款的种类和时间的长短,利率是不一样的。咱们就以笑笑的300元为例,如果你有300元钱,打算怎样存款,你是怎么想的?

生:我想存三年整存整取,时间长一些利息就会多。

生:我存一年的整存整取,如果时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。

师:你知道得真多,活期存款的利率低一些。

师:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢?我们一起来计算。

(教师给出计算利息公式:利息=本金x年利率x年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)

板书

300 x 2.25% x 1

=6.75 (元)

300 x 3.24% x 3

=29.16 (元)

师:从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。

师:下面大家再算一算300元存一年和三年整存整取各应交多少利息税?

学生汇报

6.75 x 20% = 29.16 x 20% =

师:那有没有不用交利息税的呢?

生:

师:对,只有国债和教育储蓄是不需要交利息税的。

三、练习巩固。

1、小明的爸爸打算把5000元钱存入银行(两年后用)。他如何存取才能得到最多的利息?

2、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“希望工程”。如果按年利率2.25%计算,到期后小华可以捐给“希望工程”多少元钱?

3、把20xx元钱存入银行,整存整取五年,年利率是3.60%,利息税率为20%。到期后,的本金和利息共有多少元?交了多少利息税?

四、课堂总结

通过今天的学习你有什么收获?

课前布置学生分小组到银行调查利率并了解有关储蓄的知识。

激发学生学习的兴趣,让学生在调查活动中,接触到更多的实际生活中的百分数,认识到数学应用的广泛性。

提出“怎样处理这些钱”“存入银行有什么好处”等问题,使学生从中了解储蓄的意义。

学生己有了储蓄的知识基础,对于存款的方式让学生自己讨论,在讨论交流中,学生感受到,需要根据实际情况选择合理的储蓄方式。再引出计算利息的方法。

由于讨论的问题和数据都来自于学生,这样就使计算利息更具有实际意义,学生的学习兴趣和积极性也会大大提高。

拓展学生的思维。综合应用所学的知识解决实际问题。

结合实际对学生进行思想道德教育,珍惜现在的学习机会,支援贫困地区的失学儿童。

百分数的应用三教案篇6

教学目标:

1、使学生初步掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能正确解答此类应用题。

2、进一步提高分析、比较、解答应用题的能力,培养认真审题的好习惯。

教学重点:

掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答。

教学难点:

掌握“求一个数比另一个数多(或少)百分之几”的应用题的分析方法,并能够正确列式解答。

教学过程:

一、复习准备

(一)求一个数是另一个数的百分之几用什么方法?解答这类应用题的关键是什么?

(二)口答,只列式不计算。

1、5是4的百分之几?4是5的百分之几?

2、甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的是乙数的百分之几?

3、甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的是甲数的百分之几?

(三)应用题

盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

冰的体积是原来水的体积的百分之几?

(四)引入新课

如果把、问题改为:冰的体积比原来水的体积增加了百分之几?该怎样解答呢?今天我们继续学习百分数应用题。

二、新授教学

(一)教学例题

例、盒子中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。

冰的体积比原来水的体积增加了百分之几?

1、读题,理解题意。

2、比较:例题与复习题有什么异同?

3、讨论:“冰的体积比原来水的体积增加了百分之几?”什么意思?(画图理解)

教师板书:多出来的部分占原计划的百分之几.

4、列式计算

(50—45)÷45 =5÷45 ≈0.111 =11、1%

5、思考:这道题还有其他解法吗?

50÷45—1 ≈111、1—1 =11、1%

提问:为什么要减去1?

(二)反馈

1、把例题中的问题改成“水比冰体积少百分之几?”该怎样解答?

思考:这道题与例题有什么相同的地方?有什么不同的地方?

2、一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林多百分之几?

3、一个乡去年原计划造林12公顷,实际造林比原计划多2公顷,实际造林比原计划造林少百分之几?

三、巩固练习

(一)分析下面每个题的含义,然后列出文字表达式。

1、今年的产量比去年的产量增加了百分之几?

2、实际用电比计划节约了百分之几?

3、十月份的利润比九月份的利润超过了百分之几?

4、1999年的电视机价格比1998年降低了百分之几?

5、现在生产一个零件的时间比原来缩短了百分之几?

6、十一月份比十二月份超额完成了百分之几?

(二)只列式不计算。

1、某校有男生500人,女生450人,男生比女生多百分之几?

2、某校有男生500人,女生450人,女生比男生少百分之几?

3、一种机器零件,成本从2.4元降低到0.8元,成本降低了百分之几?

4、一种机器零件,成本从2.4元降低了0.8元,成本降低了百分之几?

5、某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?

(三)思考

男生比女生多20%,女生就比男生少()。

四、课堂小结

通过今天的学习,你有哪些收获?

五、课后作业

1、我国第一大岛台湾岛面积约35760平方千米,第二大岛海南岛面积约是32200平方千米,台湾岛的面积比海南岛大百分之几?(百分号前面的数保留一位小数)

2、工程队原计划一周修路24千米,实际修了28千米,实际修的占原计划的百分之几?实际比原计划多修百分之几?

百分数的应用三教案篇7

教学内容:百分数的应用

教学目标:

1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

2、能计算出实际问题中“增加百分之几”或“减少百分之几”。提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

教学重点:会计算实际问题中“增加百分之几”或“减少百分之几”。

教学难点:在具体情境中理解“增加百分之几”或“减少百分之几”的意义。

教学过程:

一、创设情境

1、关于百分数,我们已学过那些知识?

根据学生回答,板书如下:

百分数的意义

小数百分数分数之间的互化

百分数的应用

利用方程解决简单的百分数问题

2、引入:从这节课开始,我们继续学习有关的百分数的知识。

板书课题:百分数的应用(一)

二、新知探究

问题引入:盒子里有45立方厘米的水结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

1、引导学生认识“水结成冰,体积会增加”这种物理现象,并找出题中的条件与问题。

2、你认为“增加百分之几”是什么意思?

指导学生画线段图理解“增加百分之几”的意思是:冰的体积比原来水的体积增加(多)的部分是水的百分之几

3、学生自主解决问题,师巡视,个别指导。

4、合作交流:

方法一:(50-45)÷45

方法二:50÷45≈111%

=5÷45

111%-100%≈11%

≈11%

指名学生说出自己具体的想法:

方法一:先算增加了多少立方厘米,再算增加了百分之几。

方法二:先算冰的体积是原来水的体积的百分之几,再算增加百分之几。

5、即时练习

指导学生完成第23页“试一试”。

重点引导学生理解“降低百分之几”的意思是降低的价钱数目占原来价钱的百分之几。

三、总结:

求一个数比另一个数增加或减少百分之几的应用题的方法:

(1)先求一个数比另一个数增加或减少的具体量,再除以单位“1”。即:两数差额÷单位“1”

(2)先求一个数是另一个数的百分之几,再把另一个数看作单位“1”即100%根据所求问题两者用减法运算。

四、练习提高

指导学生完成第24页练一练第1,2,3,4,5题。

百分数的应用三教案篇8

教学目标:

1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。

3、在解决问题的过程中体会百分数与现实生活的密切联系。

教学重点:

在具体的情境中理解“增加百分之几”或“减少百分之几”意义。

教学难点:

能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

教学关键:

充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。

教学过程:

一、复习引入

1、复习

师:关于百分数,你们已经学过那些知识?

指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书

百分数的意义

小数、百分数、分数之间的互化

百分数的应用

利用方程解决简单的百分数问题

2、引入

师:从这节课开始,我们继续学习有关百分数的知识。

二、探索新知

1、创设情景,提出问题

盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

根据这一情景,你能获得哪些信息?

指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。

师:你认为“增加百分之几”是什么意思?

指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的体积比原来水的体积多的部分是水体积的百分之几”

师:你能独立解决这一问题么?那就请你试一试。

2、自主探索解决问题

(1)自主探索。

让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。

(2)合作交流。

指名板演,学生可能会提供以下两种算法

方法1:(50—45)÷45

=5÷45

≈11%

方法2:50÷45=111%

111%—100%=11%

全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识

方法1:先算增加了多少立方厘米,再算增加了百分之几。

方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。

3、即时练习。

先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。

三、巩固练习

指导学生完成课本练一练中的第1题至第5题。

免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。