可能性教案7篇

时间:2022-09-28 作者:Youaremine 备课教案

凭借计划好教案,能够更好地依照实际状态对课堂进度作计划安排,我们制定教案,使接下来的教学工作顺利进行,范文社小编今天就为您带来了可能性教案7篇,相信一定会对你有所帮助。

可能性教案7篇

可能性教案篇1

第1课时

[教学内容]摸球游戏(第87页)

[教学目的]通过“摸球游戏”的活动,让学生了解数据表示的方式。又通过学生的讨论与交流,逐步使他们体会到数据表示的简洁性与客观性。

[教学过程]

1、交流中复习旧知

师:同学们,我们已经认识了可能性的大小,请看下面一道题。教师呈现题目并配图,然后问:

(1)你认为小青摸出的球可能是什么颜色?

(2)哪一种颜色的球摸出的可能性大,为什么?与同学进行交流。

2、在分析中理解数的表示方法

师:现在盒子里只有2个红球,能否摸到白球呢?

生:不能。因为盒子里没有白球。

师:那么可以用一个数来表示从这个盒子里摸到的白球的可能性呢?

生:用0,因为0代表没有。那么摸出红球的情况呢?

生:一定能摸到红球,因为盒子里都是红球。

师:从盒子里一定能摸到红球,我们说此时摸到红球的可能性是1。谁能说一说生活中哪些事情发生的可能性是0,那些事情发生的可能性为1?(生举例说明)

3、在观察、讨论中理解数的表示方法

师出示一个只有1个红球与一个白球的盒子。

师:从这个盒子中摸到红球的可能性是多少呢?

生:摸到红球的可能性是一半。

师:如果用数来表示摸到红球的可能性,可以怎样表示?

生:12。

师:这个同学说的很好,如果在盒子里在放入一个黄球,那么摸出红球的可能性怎样表示呢?让学生开展分组讨论。(也可以让学生自己想办法,如给每个球标上字母,再观察等)

4、课堂练习:

87页1题、2题。(生小组讨论)

5、归纳小节:用数据表示可能性大小的方式。(可让学生自己,也可师生共同归纳)。

6、布置作业:

87页下面的实践活动题。

可能性教案篇2

教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。

教学目标:

1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。

2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。

3、情感目标:在活动交流中培养合作学习的意识和能力。

教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。

教学难点:利用可能性的知识解决实际问题。

教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。

教学过程:

一、创设情境,激趣猜测

1、听故事,激发学习兴趣

(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?

(动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)

2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?

学生猜测:它有可能追到小兔,也有可能追不到小兔。

师:那追到的可能性会......很小。

3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。

(板书课题:可能性的大小)

实践是最好的老师,下面我们就通过摸球试验来研究,好吗?

二、探究、验证

1、试验准备。

(1)介绍试验材料。

师:每个小组准备了一个盒子,盒子里都有红球和蓝球。

(2)说明试验要求。

(多媒体出示小组合作要求。)

师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题:(一)摸到哪种颜色球的可能性大?

(二)摸到哪种颜色球的可能性小?

(3)提出注意事项。

师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。

2、合作试验、初步推测。

(1)各小组试验,教师巡视。

(2)观察、汇报。

师:谁把你们组的试验结果汇报一下?

生汇报。

3、推理、验证、归纳。

(1)观察。

(集中展示各小组的摸球情况统计图。)

师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?

生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。

师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?

(2)思考。

师:这都是你们的推测,到底对不对呢?有什么方法可以知道?

师:好!莫老师数三声,我们就一起把盒子打开。

师:请同学们数一数,红球有几个?蓝球有几个?看了这些颜色球的数量,再联系刚才的试验结果,你知道了什么?

(红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)

师:也就说,在摸球试验中,可能性的大小和什么有关系呢?

(与球的数量有关。)

师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。

(3)归纳。

师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?

三、应用、拓展

师:其实生活中还有不少事情的出现与可能性的大少有关,你们能运用可能性知识来解决一些生活中的实际问题吗?

1、转转盘。(课本106页的“做一做”。)

师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?

(生可能会选黄色)你为什么会选黄色格呢?

(因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)

转转试试看?

不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)

师:为什么只有()个同学拿到图案?

(因为黄色格的数量少,蓝色的数量多,转到黄色的可能性小。)真聪明!那就把这张图案送给你吧?

3、拓展。

师:老师这里还有一个有趣的转盘(出示幸运转盘)。

商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?

(因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)

师:你们能用学到的数学知识解释生活中的问题,真是棒极了!

2、设计转盘。(练习二十第4题。)

师:看了这个转盘,你们想不想也来设计这样有趣的转盘?

(1)课件出示设计要求。

请同学们在书本109页上涂一涂。

(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)

问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?

(3)。

师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?

4、解决问题。

师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)

师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)

师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?

(小猫扑到黄色蝴蝶的可能性大。)

师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)

师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?

(天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)

师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)

师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?

(因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)

师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。

听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)

(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)

5、猜一猜。(练习二十第10题。)

师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。

师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有x个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?

汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。

师补充:虽然猜对的可能性小,但我们也是有可能猜对的。

四、、延伸

1、延伸。

师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流好吗?

2、。

(1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?

(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?

出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。

师:看了这个故事结果后,你们有话要跟小猴子说吗?

小朋友们,我们可不要像小猴那样三心两意哦!

五、板书设计

可能性大小

数量多可能性大

数量少可能性小

可能性教案篇3

课题:

观察物体、统计与可能性、数字编码

复习目标:

1、能从不同的角度观察物体,并画出平面图,培养学生的空间观念。

2、认识简单的可能性事件,会求简单事件发生的可能性,并用分数表示。能结合具体实例体会游戏的公平性,会求一组数据的中位数,提高学生的统计意识和能力。

3、通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,学会运用数进行编码,初步培养学生的抽象、概括能力。

复习重点:

从不同方向观察多个几何形体。

教学准备:

小正方体10个。

教学过程:

一、谈话引入。

今天这节课,我们一起来复习有关观察物体、统计与可能性、数字编码的知识。[板书课题]

二、整理和复习。

1、复习观察物体

①观察长方体,一次最多能看到几个面?

②出示总复习第8题。

先让学生审题,理解题意,再让他们在草稿本上画一画,最后展示学生作品,集体订正。

③请你找出从上面、正面、侧面看到的形状。

指名口答。

④p124第11题。

同桌之间摆一摆,然后在全班展示学生的不同摆法。

2、复习统计与可能性

①p122第9题。

小红和小刚在玩抛硬币的游戏,谁能说一说他们的游戏规则。

游戏规则公平吗?说说你的想法。

两枚硬币抛下后可能出现的结果有以下四种情况(如表)小红和小刚获胜的可能性都是2/4(1/2),所以游戏公平。

第一枚硬币 第二枚硬币 结果

1 正 正 小红赢

2 正 反 小刚赢

3 反 正 小红赢

4 反 反 小刚赢

②p125第12题

四人小组讨论后全班交流。

三名学生可能会出现以下8种情况(如表),所有同学获胜的可能性都是2/8(1/4),所以游戏公平。

第一位同学第二位同学第三位同学 结果

1 手心 手心 手心 平

2 手心 手心 手背 第三位同学赢

3 手心 手背 手心 第二位同学赢

4 手心 手背 手背 第一位同学赢

5 手背 手背 手背 平

6 手背 手心 手心 第一位同学赢

7 手背 手心 手背 第二位同学赢

8 手背 手背 手心 第三位同学赢

③说出下面这组数据的中位数。

问:求中位数时要注意什么?

如果有双数个数据,怎样求中位数?

3、复习数字编码。

①咱们学校的邮政编码是多少?

邮政编码共由几位数字组成?前两位数字表示什么?前三位、前四位及最后两位数字分别表示什么?

②介绍你自己的身份证号码,并说出各数字代表什么意义?

师强调:身份证倒数第2位的数字是用来表示性别的,单数表示男性,双数表示女性。

三、复习小结

今天这节课复习了哪些内容?你有什么收获?还有什么不懂的问题?

教学反思:

前几部分复习内容,我都安排了学优生上复习课,可这部分内容却再也不敢放手了,其最主要的原因是可能性的部分习题,老师之间都时有争议,更何况学生。果不其然,今天在教学122页抛硬币时,学生们就到底是3种还是4种可能的结果发生了巨大分歧。教材125页“手心、手背”一题更是让他们无从下手。在教学此题时,我将重点放在引导学生如何将各种可能情况既不重复又不遗漏地写出来。在此特别感谢周欣同学,她的回答思路清晰,给全班同学许多启示。

教学失误:

周五布置作业时没考虑到要学生们准备10个小正方体,所以124页第11题今天只能请学生上台用教具拼摆,由于全班同学由“工程师”变成“观众”,所以课堂中少了孩子们发现与创造后的欣喜若狂。我会在明天的数学课中及时弥补这一失误。

可能性教案篇4

本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

1.体验事件发生的确定性和不确定性。

对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。

教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的

(1)主题图的教学。

教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。

需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。

(2)例1的教学。

教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。

教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。

①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。

②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。

③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教

科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。

④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。

⑤(3)例2的教学。

⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。

⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。

⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。

⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。

为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。

一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。

由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。

可能性教案篇5

教学内容:

国标本苏教版数学二年级上册《可能性》

教材简析:

在小学阶段,苏教版教材对“可能性”知识的教学共安排了四次(见下表)。本节课是苏教版教材第一次安排有关“可能性”内容。 二年级 用“一定”“可能”和“不可能”描述事件的可能性 三年级 用“经常”、“偶尔”、“差不多”描述一些事件发生可能性的大小 四年级 游戏规则的公平性 六年级 用分数表示可能性的大小 本节课将可能性和摸球等活动相结合,在活动中让学生体验可能性,借助活动的素材用语言描述可能性。“一定”和“不可能”是用来对确定事件发生结果的预测,“可能”则是对不确定事件发生结果的预测。但无论是确定事件还是不确定事件,都存在事件发生的随机性,这是教学中的难点,难在无法用语言描述,难在无法在一节课中用事实证明,难在学习对象是二年级孩子——他们的逻辑思维能力还很弱。对随机思想渗透的时机和程度是教学设计时的重要和难点问题。

教学目标:

1. 通过摸球,经历事件发生的过程,初步感受事件发生的随机性。

2. 会用不可能、可能和一定,描述摸球事件发生的结果。

3. 能根据摸球的结果设计事件,并进行解释。

4. 能用不可能、可能和一定描述抛硬币、转盘和掷骰子事件的结果。

5. 尝试用不可能、可能和一定描述已经掌握的简单数学知识。 教学重点: 学会用不可能、可能和一定,描述数学与生活。 教学难点: 理解不确定事件,感受随机性。 教学过程:

一、故事引入,定位起点

出示故事——“乌鸦喝水”的三幅图,请学生用“一定”“可能”和“不可能”分别说一说这三幅图上的故事。

?设计意图:“乌鸦喝水”是小学语文一年级课本中的一篇文章,是学生耳熟能详的故事。借助这个故事,让孩子们用“一定”“可能”和“不可能”进行描述,可以充分了解他们对一定”“可能”和“不可能”这三个词的理解,定位孩子们对可能性知识的已有认知水平。】

二、理解“一定”“可能”和“不可能”

(一)理解“一定”

1. 小组操作活动 在小组内开展摸球的活动(活动材料见图1),每人任意摸一个球,结果会 怎样?指导学生学会用比较规范的语言描述:“从袋子里任意摸一个球,一定是红球。”

2. 独立思考 将如图1的两个袋子里的球倒入一个布袋(见图2),请学生独立思考:任 意摸一个球,结果会怎样?

3. 对比提升

(1)比较图1和图2两个袋子里的球,请学生思考为什么“任意摸一个球,都一定是红球。”通过讨论,学生能总结出:两个袋子里都是红球,所以任意摸一个一定是红球。

(2)教师追问:如果要往这个袋子里再放入一些球,任意摸一个还是红球,可以怎么放呢? 学生通过思考,提升对“一定”的认识:只要袋子里都是红球,没有其它颜色的球,不管多少个,任意摸一个就一定是红球。

(二)理解“可能”

1. 借助实物思考讨论

(1)教师将红球和黄球混入一个袋中(见图3),提问:如果从这个袋子里任意摸一个球,结果会怎样?为什么用“可能”呢? 教师从图3的袋中拿走一个黄球(见图4),追问:现在呢? 教师再从图4的袋中拿走一个黄球(见图5),追问:现在呢?

(2)思考:为什么从这三个袋里任意摸一个球,都可能是红球?学生讨论后得出结论:袋中有3个红球,有3个黄球,任意摸一个就有可能摸到红球。

2. 摸球,想象推理。 请一生从图5的袋中任意摸一个球,摸3次。

摸球的结果可能会出现以下两种

(1)三次摸球的结果,可能会出现黄球,可能会出现红球。学生从摸球的结果中验证了刚才的预测结果。

(2)三次摸球的结果,都三次出现红球。这种情况是有可能出现的,比较袋中的红球占大多数。如果出现此种情况,立即引导学生思考:如果再摸一次,结果会怎样?

?设计意图:此处是渗透事件随机性的最好时机。通过实际的摸球并不能立即验证猜测,有时会出现摸球多次仍没有摸到红球,解决问题的关键是要通过让学生想象、推理,完成对随机性的感受。】

3. 回顾思考。

观察三袋子里球(见图3、4、5),为什么从这三个袋里任意摸一个球,都可能摸到红球? 学生得到结论:只要袋中有红球,有黄球,任意摸一个就有可能摸到红球。

4. 思考提升。

提问:如果从这个袋子再拿走一个球,任意摸一个还可能是红球,你准备拿什么球?学生通过思考,得出结论:只要袋子里有红球,不管有几个,还有黄球,就有可能摸到红球。

(三)理解“不可能”

1.教师出示一个空袋子(见图6)。

(1)根据要求“从这个袋子里任意摸一个球,不可能是红球”,往袋里装球,可以怎么装?教师提供一些红球和黄球,请学生示范装球。学生会装出如同图7的方法。

(2)追问:还有不同的装法吗?并在小组里交流。

2.思考:只要怎么装,就不可能摸出红球?学生得出结论:只要袋中没有红球,就不可能摸到红球。

(四)回顾与小结

1. 教师引导学生回顾:从这三个袋子里任意摸一个球,见(图2、3、7)第一个袋子一定摸到红球,第二个袋子可能摸到红球,第三个袋子不可能摸到红球。在数学上,就把小朋友们刚才用这三个词说的几句话,叫做摸到红球的可能性。教师板书课题:可能性。

2. 教师提问:你能看着这三个袋子,说一说摸到黄球的可能性吗? 生:从第一个袋子里任意摸一个球(图2),不可能摸到黄球。 从第二个袋子里任意摸一个球(图3),可能摸到黄球。

从第三个袋子里任意摸一个球(图7),一定能摸到黄球。

三、巩固练习设计

(一)装球活动练习

在小组内开展装球的活动,分层次巩固对不可能、可能和一定的理解,练习用这些词语描述摸球事件结果的可能性。 活动材料(见下图):三种不同颜色的球若干个,三个透明塑料袋。 任务一:每小组装3袋球,装完后要用“一定”来说一说,你准备怎么装? 生汇报后,师提问:观察这些袋子里的球,有什么发现?

生1:每袋中的球颜色一样。

生2:每袋中球的个数不同。

生3:不管有多少个,每个袋中只有一种颜色的球,任意摸一个,一定就是这个颜色。

任务二:每小组装3袋球,装完后要用“可能”在小组里说一说。 师提问:你有什么发现?

生1:袋中有绿球和紫球,任意摸一个,可能是绿球,也可能是紫球。

生2:袋子有绿球、蓝球和紫球,任意摸一个,可能是绿球,可能是蓝球,也可能是紫球。

生3:只要袋中的有不同的颜色的球,每种颜色都有摸到的可能。

任务三:如果就看着每人现在手里的这袋球,会用“不可能”来说一说吗?在小组里交流,并说说你的发现。

生:袋子里没有那种颜色的球,任意摸一个,就不可能摸到。

(二)拓展练习

摸球游戏中蕴含着“可能性”,其它的游戏中也蕴含了“可能性”。

1. 抛硬币。 师:任意抛一次硬币,结果会怎样?

2. 转盘。 师:任意转一次转盘,结果会怎样?

3. 掷骰子。

师:任意掷一次骰子呢? 追问:如果任意掷一次,一定是3,骰子上的数字可以怎么改?

?设计意图:抛硬币、转盘和掷骰子是苏教版教材第一学段概率与统计领域常用的活动素材类型,也是学生十分熟悉的游戏。只有当学生有了充分的活动经验支撑时,才能更好地将今天所学习的可能性的知识提升、升华,内化为个体的经验,为后继的学习铺垫。】

四、全课总结。

设问:回顾今天的学习,你对“可能性”有什么新的认识? 生1结合具体的摸球活动解释“一定”“可能”和“不可能”。 生2能适当抽象出“一定”“可能”和“不可能”的含义。

五、拓展练习。

用可能性的知识我们还可以用来描述已经学过的数学知识。 出示1+花

生1:方框里的数一定小于4。

生2:方框里的数不可能大于4。

?设计意图:可能性是逻辑十分严密的概率领域的知识,用数学的知识进行解释,符合其“严密性”的特征,不会让学生产生歧义。选择学生已经掌握的数学知识则更加易于学生理解,能更好地运用可能性的知识进行解释。】

师作全课总结:只要小朋友们留心观察,我们的身边处处都有数学。

可能性教案篇6

教材分析:

本单元是在学生学习了简单的统计图表知识,初步体验了数据的收集、整理的过程,并能根据统计图表中的数据提出并回答简单的问题的基础上学习的,是进一步学习统计知识的基础。此外,对可能性知识的学习,是学生今后学习概率知识的基础。本单元教学的主要内容包括按不同的标准对事物进行分类统计;初步体验有些事件的发生是确定的,有些事件的发生是不确定的。教学重点是按不同的标准对事物进行分类统计,教学难点一是在分类统计时找到不同的分类标准,二是对事件发生可能性的理解。

教学目标:

1、会用不同的方法进行分类统计,完成相应的统计表,根据统计的结果提出问题、解决问题或提出建议。

2、初步了解事件发生的确定性和不确定性,形成实事求是的态度和爱思考、爱动脑的习惯。

3、通过现实情境体验数据的收集、整理和分析的过程,初步了解统计的意义,发展初步的统计观念。

4、通过学生经历统计的过程,发展学生运用数学知识解决问题的意识。

教学重难点:

对分类标准和对事件发生可能性的理解。

教学准备:

课件

教学过程:

一、导课

师:同学们看这里美不美?你观察到了什么?

河边有鸭,还有鹅!有大的、有小的;有花的、黑的,还有白的!

河里还有好多人游泳呢!有男的、有女的;有大人、有小孩,好多人呀!

游泳的有多少人呢?大约有30多个呢!

二、教学统计

师:到底有多少人呢?怎样才能知道呢?

(1)一个一个地数,数数就知道了。

(2)一个个地数不容易数清楚,咱们统计一下吧!

师:好!那怎样进行统计呢?

1、我们可以先分类再数一数进行统计。

2、我先数男的,再数女的。

3、按戴泳帽和不戴泳帽的进行统计。

师:那大家就开始行动吧!

学生自己动手活动。

师:这就是我们今天要学习的分类统计。

三、自主练习

1、分类统计。

仔细观察图片,你看到了什么?你想怎样分类?(按种类或是颜色)

2、一共有多少块积木?

除了按颜色进行分类还可以怎样分类?(形状)

3、统计本班学生的情况。

思考:我们的同学可以按什么标准分类?(年龄、性别)

四、总结

作业:回家统计你们书橱的种类。

板书设计:

统计

(按种类或是颜色) (年龄、性别)

可能性教案篇7

教学目标:

1、体验事件发生的可能性以及游戏规则的公平性,会求简单事件发生的可能性。

2、根据可能性事件与游戏规则的公平性关系能设计合理的游戏规则,解决实际问题。

3、创设问题情境,激发学生学习的热情和兴趣。

教学重难点:

重点: 理解掌握可能性的意义,用分数表示等可能性

难点: 能设计合理的游戏规则,解决实际问题。

教学准备:白球、黄球、硬币

教学过程:

一、创设情境,导入课题

1、今天老师跟大家一起玩个比赛好吗? 这里有三个盒子,盒子里都装有了6个球,老师想跟同学比赛,看谁能摸得到白球,比比谁的运气好(老师盒子里装6个白球,学生的一个装6个黄球,另一个盒子里装了3个黄球和3个白球)

师生比赛。

思考:你能猜出老师运气好的奥秘吗?

估计回答:

1、老师的盒子装的全是白球,所以一定摸到是白球。

2、一个盒子里装除了白球还有其他颜色的球,所以摸到的可能是白球。

3、还有一个盒子没有装白球,所以不可能摸到白球。

板书: 可能 一定 不可能

在日常生活中,有的事物可能发生,有的事物不可能发生。今天我们来研究有关可能性的问题。

板书: 可能性

二、探究新知

1、同学们最喜欢课外活动,你们看参加课外活动的小朋友可多了。

引导学生看课本图

老师让我们红队先开球吧!还是让我们黄队先开球吧!…

谁先开球呢?同学们你们有没有公平的办法。

学生汇报

1、石头 剪子 布

2、转转盘

3、抛硬币

介绍:国际足球比赛一般采用抛硬币办法决定谁开球,你们认为抛硬币的方法公平吗?为什么?

我们来做抛硬币实验来验证。

2、活动体验,感受过程

抛硬币游戏

游戏规则:

1、竖着把硬币放在20厘米左右的高处让硬币自由落在桌面,每组抛20次。

2,用“正”法在草稿纸上做好记录。

3,抛完后,小组长统计本组的情况并填好记录表,组内同学共同校对。

4,活动时我们要互相合作,有秩序,保持安静。

四、巩固拓展

放学以后,你喜欢做什么?(看动画片)你喜欢看什么动画片?

1、(出示课件:小明喜欢看动画片《电击小子》小丽喜欢看《羊羊快乐的一年》,但只有一台电视机,该怎么办)

生:他们可以抽扑克牌解决

生:可以用“石头、剪子、布”来解决

生:可以掷骰子来解决

……

师:你们的方法很好,我们再来看小明和小丽的办法好吗?

(课件:掷一枚正方体决定谁看动画片。小正方体共有6个面,每个面上标有数字1,2,3,4,5,6。如果朝上的数字是6,则小明看,如果朝上的数字不是6,则小丽看。)

生:老师,这样不公平 。

生:是呀是呀,小丽要耍赖了。

生:我给他们改游戏规则吧!改为如果朝上的数字是1,2,3则小丽去,如果朝上的数字是4,5,6则小明去。

生:这个办法对他们来说是公平的 。都是3/6=1/2

师:你想的办法也很公平。

小军不看动画片,他喜欢下飞行棋,你玩过飞行棋吗?怎样玩的?掷一个正方体骰子,朝上的面数字是几,就走几步。正方体的6个面上分别写着1,2,3,4,5,6,掷出每个数字可能性一样吗?

生:可能性都是1/6 师:如果我们把这个正方体改成长方体,掷出的可能性一样吗?为什么?

师:长方体的六个面不一样大,所以每个面朝上的可能性不相等。

五、全课总结

今天我们在游戏中知道了一件不确定的事情它的可能性可以用一个数表示,例如,掷硬币掷出正面和反面的可能性都是1/2,掷一个正方体的骰子,每个面掷出的可能性都一样。