光与色的关系教案6篇

时间:2022-10-14 作者:Brave 备课教案

在新学期开始前,相信教师们一定都有准备一份教案,教案在起草的时候,老师肯定要注意文字表述规范,下面是范文社小编为您分享的光与色的关系教案6篇,感谢您的参阅。

光与色的关系教案6篇

光与色的关系教案篇1

一、借助实物,初步理解。

1、创设情境,出示问题:老师出示一个苹果,提出问题:如果把这个苹果平均分给两个同学,每人分几个?谁来分一下?

生:用小刀把苹果从中间切开,平均分成两份。

说明每份是这个苹果的二分之一。

师:谁能列式?

生:1÷2=0.5(个)。

师:谁能用分数来表示商?

生:二分之一。

师:计算除法,在得不到整数商时,除了可以用小数外,还可以用分数表示,今天我们来研究分数与除法的关系。

评:开头点题,节省了时间,用学生熟悉的事情吸引了学生的注意力,激发了学生的兴趣。

2、观察实物,探索原理。

师:如果我们把这个苹果平均分成4份,该怎样分?

学生上台分一分。学生边分边说:把一个苹果平均分成4份,每份是四分之一个。

评:借助实物操作与演示,学生很容易直观理解一个的二分之一就是二分之一个、一个的四分之一就是四分之一个的道理。并且能够迁移类推得出结论:一个的几分之几就是几分之几个。

二:合作交流,解决问题。

1、讲故事,提出问题。

昨天晚上,老师做了3张饼,可香了,刚要吃饭的时候,对门家的.小姑娘来了,进门便是客,我们一家三人热情地邀请她与我们共进晚餐,吃完饭后,我一看,三张饼全吃完了,你能计算出我们平均每人吃几张饼吗?

评:简短的小故事,吸引了学生探索的积极性与主动性。

2、合作交流,解决问题。

⑴想:教师出示三张圆形纸片,说明:用三张圆形纸片代替三张饼,现在如果要平均分给你们组四个人,你该怎样分?每人想出一个办法。

⑵评:小组内交流,在组长的带领下,评选出你们认为最合理、最简单的方法。

⑶分:根据刚才选出的办法,利用手中的学具(三张圆形纸片、剪刀、彩笔)剪一剪、分一分,并且把组长的那份涂色。

⑷汇报:小组间交流汇报,争论、补充。

生1:我们小组是一张饼、一张饼的分,把每张饼都平均分成4份,每人吃一份。三张饼都吃完后,就是每人吃了3个四分之一,也就是四分之三张。

生2:我们是把3张饼摞起来,再平均分成4份,每人吃四分之一,再拼起来就是四分之三张。

生3:我们是先把2张饼从中间切开,每人分半个饼,再把第三张饼平均分成4份,每人一份,又分了四分之一,前面的半个是四分之二张,一共每人吃了四分之三张。

⑸评价:自由发表意见,评价哪组的分法最好。

生1:我认为第一种分法最好,因为我们吃的时候就是这样分的。

生2:我认为第2种方法好,因为这样分简单,而且先分好了再吃更显得公平。

师总结:刚才同学们都说的很有道理,而且你们说的清楚明白。说明我们同学的语言表达能力越来越强了。

师生一起板书出答案。

评:学生获得知识的过程不单是知道什么,更重要的是知道为什么,小组合作过程是本节课的创新之处,也是学生求知的内在需要和渴望。小组合作过程分:想、评、分、汇报、评价五步完成,要求具体,分工明确,既有独立思考的时间,又有交流、操作的时间,使各个环节都高效有序地进行。体现了小组学习的实效性。

3、观察比较,寻求规律

师:观察黑板上三个算式,找出被除数、除数与商中的分子、分母有什么关系。

学生回答,得出结论:被除数÷除数=被除数/除数

师:如果用字母a、b表示,该怎样表示?

生:a÷b=a/b

师:在除法中,对除数是怎样规定的?

生:除数不等于0。

师:那么,分数中应该谁有限制呢?

生:b≠0。

评:打破原有学习模式,放手让学生自己通过观察,得出公式,这样在学生头脑中留下深刻的印象。

三、练习巩固,加深理解。

1、阅读课本102—103页内容。

2、练习题略。

四、学生回顾,全课小结。

师:在这节课,你学到了什么知识?你能用这节课学到的知识,编出不同的数学问题来吗?

总评:“新课标”的重要理念之一是关注学生的生活体验和也已有的生活经验。课始就设计分苹果,既贴近学生生活,又直观容易理解。这样在课的开始,就激发了学生的学习兴趣,使学生获得了愉悦的数学学习体验,同时促进学生主动构建相关的数学知识。

教学整个过程注重了学生兴趣的激发与主动性的参与,在小组合作中,给予学生充足的时间与空间,让每个学生都能独立思考,与别人交流,动手操作。“动手实践、自主探索与合作交流是学生学习数学的重要方法。”在教学设计中注意体现这一理念,在主动的、互相启发的学习活动中是学生逐步掌握数学的思想方法,受到数学思维的训练,获得知识,发展能力。

光与色的关系教案篇2

一,铺垫复习,导入新知

1,提问:a,7/8是什么数 它表示什么

b,7÷8是什么运算 它又表示什么

c,你发现7/8和7÷8之间有联系吗

2,揭示课题.

述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

板书课题:分数与除法的关系

二,探索新知,发展智能

1,教学p90 .例2:把1米长的钢管平均截成3段,每段长多少

提问:a,试一试,你有办法解决这个问题吗

板书:用除法计算:1÷3=0.333……(米)

用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

是1/3米.

b,这两种解法有什么联系吗

(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

板书: 1÷3= 1/3

c,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

表示 也就是说整数除法的商也可以用谁来表示

2,教学p90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

(1)分析:a,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

b,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

板书: 3÷4= 3/4

(2)操作检验(分组进行)

① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

② 反馈分法.

提问:a,请介绍一下你们是怎么分的

(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

b,比较这两种分法,哪种简便些

※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

3,小结提问:a,观察上面的学习,你获得了哪些知识

板书: 被除数 ÷ 除数 = 除数 / 被除数

b,你能举几个用分数表示整数除法的商的例子吗

c,能不能用一个含有字母算式来表示所有的例子

板书: a÷b=b/a (b≠0)

d,b为什么不能等于0

4, 看书p91 深化.

反馈:说一说分数和除法之间和什么联系 又有什么区别

板书:分数是一个数,除法是一种运算.

三,巩固练习

1,用分数表示下面各式的商.

5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

2,口算.

7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

四,全课小结

当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

在整数除法中零不能作除数,那么,分数的分母也不能是零.

五,家庭作业

p93 .1,2,3

板书设计: 分数与除法的关系

例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

被除数 ÷ 除数 = 除数 / 被除数

a÷b=b/a (b≠0)

分数是一个数,除法是一种运算

光与色的关系教案篇3

教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

动手操作的能力和抽象,概括,归纳的能力。

教学重点:分数的数感培养,以及与除法的.联系。

教学难点:抽象思维的培养。

教学过程:

一、铺垫复习,导入新知。

1、提问:

a、7/8是什么数,它表示什么

b、7÷8是什么运算,它又表示什么

c、你发现7/8和7÷8之间有联系吗?

2、揭示课题。

述:它们之间究竟有怎样的关系呢?这节课我们就来研究"分数与除法的关系"。

板书课题:分数与除法的关系

二、探索新知,发展智能。

1、教学p90。例2:把1米长的钢管平均截成3段,每段长多少。

提问:

a、试一试,你有办法解决这个问题吗?

板书:用除法计算:1÷3=0.333……(米)

用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就是1/3米。

b、这两种解法有什么联系吗?

(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和1/3是相等的关系。)

板书:1÷3=1/3

c、从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来表示也就是说整数除法的商也可以用谁来表示

2、教学p90.例3:把3块饼平均分给4个孩子,每个孩子分得多少块。

(1)分析:

a、想想:若是把1块饼平均分给4个孩子,每个孩子分得多少怎么列式。

b、同理,把3块饼平均分给4个孩子,每个孩子分得多少怎么列式3÷4的商能不能用分数来表示呢?

板书:3÷4=3/4

(2)操作检验(分组进行)

①把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼。

②反馈分法。

提问:

a、请介绍一下你们是怎么分的

(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4块,也就是3/4块)

(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的,拼起来相当于一块饼的3/4,也就是3/4块)

b、比较这两种分法,哪种简便些把5块饼平均分给8个孩子,每个孩子分得多少说一说自己的分法和想法。

3、小结提问:

a、观察上面的学习,你获得了哪些知识

板书:被除数÷除数=除数/被除数

b、你能举几个用分数表示整数除法的商的例子吗?

c、能不能用一个含有字母算式来表示所有的例子。

板书:a÷b=b/a(b≠0)

d、b为什么不能等于0

4、看书p91深化。

反馈:说一说分数和除法之间和什么联系又有什么区别。

板书:分数是一个数,除法是一种运算。

三,巩固练习

1、用分数表示下面各式的商。

5÷824÷2516÷497÷139÷9c÷d

2、口算。

7÷13=()÷9=1/2=()÷()8/13=()÷()

3、7/10表示把单位"1"平均分成()份,表示这样的()份的数。1÷21表示两个数(),还可以表示把()平均分成()份,表示这样的一份的数。

四,全课小结

当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母,故此,分数与除法既有联系,又有区别。

在整数除法中零不能作除数,那么,分数的分母也不能是零。

五,家作

p93.1,2,3

板书设计:分数与除法的关系

例2:1÷3=0.333……(米)=1/3(米)例3:3÷4=3/4

被除数÷除数=除数/被除数

a÷b=b/a(b≠0)

分数是一个数,除法是一种运算

光与色的关系教案篇4

一、教材分析

“分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。

二、教学目标

本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

分数与除法的关系这一小节的目标有以下几点:

1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

三、课前准备

本课材的内容是由以下几部分组成的:

第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。

第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。

第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

第四部分:是教学有关单位名称之间的转化。

本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。

在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

材料准备:一米长的绳子一条,每个学生准备三个大小相同的圆纸片,水彩笔、直尺等文具。

光与色的关系教案篇5

教学内容:

人教版五年级数学下册第四单元p49l。

教学目标:

1.使学生理解两个整数相除的商可以用分数来表示,会用分数表示两个数相除的商。

2.使学生正确理解和掌握分数与除法的关系

3.培养学生的应用意识,渗透辩证思想,激发学生学习兴趣。

教学重难点:

1.理解和掌握分数与除法的关系。

2.用除法的意义理解分数的意义。

教学具准备:

课本挂图,圆形纸片(4—5张)。

教学过程:

一、创设问题,复习导入

1.填空。

6表示( )。

7(2)的分数单位是( ),它有()个这样的分数单位。 10(1)

2.问题引入

师:5除以9,商是多少?(板书:5÷9 =)如果商不用小数表示,还有其他方法吗?有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。 板书课题:分数与除法

二、探索研究,学习新知

(一)教学例1

1.出示挂图,读题后,指导学生根据整数除法的意义列出算式。

2.讨论:1 除以3结果是多少?你是怎样想的?

3.汇报讨论结果:

生:我解答这道题的列式是1÷3,可以把一个蛋糕看作单位“1”,把它平均分成3份,表示这样的一份的数,可以用分数1111来表示,1个蛋糕的就是个,所以,1÷3 =。 3333

教师根据学生回答板书:

1÷3 =

(二)教学例3

1.出示挂图,读题后,引导学生列出算式:3÷4。

2.指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

引导学生边分边思考:我们把谁看作单位“1”?把它平均分成4份,每份是多少?你想怎样分? 教师巡视,参与指导。

3.汇报演示分得的过程及结果,教师根据学生汇报总结不同的分法。

方法一:可以一个一个地分,先把每块月饼平均分成4份,每块可分得4个

个11(个)答:每人分得个。 331,3块月饼共分得124113,平均分给4个人,每人可分得3个,合在一起是块。

3块月饼,4方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的1份,拼在一起就得到

所以每人分得3块。(如图)

板书:3÷4 =

4.理解。 师: 33(块)答:每人分得块。 443块月饼表示什么意思?

指导学生说清理解:表示把3个月饼平均分成4份,表示这样1份的数;还可以表示把1个月饼平均分成4份,表示这样3份的数。 师:去掉单位名称,你能说一说3表示的意思吗?

可以放手让学生说一说,归结明白:可以表示把单位“1”平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样1份的数。

光与色的关系教案篇6

[教学目标]

1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

[教学重、难点]

探索并发现三角形任意两边之和大于第三边。

[教学准备]

学生、老师各准备几个长短不等的小棒、直尺、探究报告单。

[教学过程]

一、摆一摆,激发探究欲望

师:前一节课我们学习了三角形,给你三根小棒,谁能到黑板上围成一个三角形?

(指两名同学到黑板上来。提供的小棒一组能摆成三角形,另一组摆不成三角形。)

在学生摆不出来时,引导学生发现不是任意三根小棒都能摆出三角形来。

师:若想再摆个三角形,你有解决的办法吗?

看来,要想摆成一个三角形,对三条边的长度是有要求的。这节课我们就来研究三角形边的关系。(板书课题)

师:谁来猜一猜,这三条边究竟有什么样的关系呢?

师:你的猜想是否正确呢,我们还是用实验来验证吧。

二、操作验证,揭示三边关系

(一)分组研究,四人小组长拿出准备好的四组小棒。

1、 量出每组小棒的长度。

2、 将三根小棒首尾相接,看是否能围成三角形。

3、 把任意两条边的长度加起来,再与第三边进行比较。(用式子表示)

4、 小组讨论,你发现了什么?将实验结果填写在探究报告单上。

(二)小组汇报交流实验结果

结论:三角形任意两边的和大于第三边。(引导学生理解“任意”的意思)再用这个结论解释实验中围不成三角形的原因。

三、应用与拓展

1、判断下面几组线段能否围成三角形,为什么?

(1)1厘米、3厘米、5厘米

(2)3厘米、5厘米、2厘米

(3)11厘米、6厘米、7厘米

2、小华上学走哪条路近?为什么?(引导学生从多角度解释)

3、一个三角形,其中两条边长是4厘米和6厘米,第三条边长是多少厘米?

4、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根3米长的木料,假如你是设计师第三根木料会准备多长?并说明理由。

5、 用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?