九年级数学教案通用5篇

时间:2023-01-04 作者:Surplus 备课教案

教案是老师为了调动学生积极性提早完成的书面表达,教案在完成的过程中,你们需要强调讲授内容要点,以下是范文社小编精心为您推荐的九年级数学教案通用5篇,供大家参考。

九年级数学教案通用5篇

九年级数学教案篇1

课题:一元二次方程实数根错例剖析课

【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1 下列方程中两实数根之和为2的方程是()

(a) x2+2x+3=0 (b) x2-2x+3=0 (c) x2-2x-3=0 (d) x2+2x+3=0

错答: b

正解: c

错因剖析:由根与系数的关系得x1+x2=2,极易误选b,又考虑到方程有实数根,故由△可知,方程b无实数根,方程c合适。

例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

(a) k>-1 (b) k<0 (c) -1< k<0 (d) -1≤k<0

错解 :b

正解:d

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

正解: -1≤k<2且k≠

例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的'两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得

x1+x2= -(2m+1), x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4 m2 = 2

错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。

正解:m = 2

例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

错解:△=[-2(m+2)]2-4(m2-1) =16 m+20

∵ △≥0

∴ 16 m+20≥0,

∴ m≥ 4

又 ∵ m2-1≠0,

∴ m≠±1

∴ m的取值范围是m≠±1且m≥ -

错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-

例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,则a<2.25

又∵a是非负数,∴a=1或a=2

令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

∴方程的整数根是x1= -1, x2= -2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3

?练习】

练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<

∴当k< 时,方程有两个不相等的实数根。

(2)存在。

如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。

∴当k= 时,方程的两实数根x1、x2互为相反数。

读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

解:上面解法错在如下两个方面:

(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。

(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?

解:(1)当a=0时,方程为4x-1=0,∴x=

(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4

∴当a≥ -4且a≠0时,方程有实数根。

又因为方程只有正实数根,设为x1,x2,则:

x1+x2=- >0 ;

x1. x2=- >0 解得 :a<0

综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

【小结】

以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

2、运用根与系数关系时,△≥0是前提条件。

3、条件多面时(如例5、例6)考虑要周全。

【布置作业】

1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?

2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。

求证:关于x的方程

(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。

考题汇编

1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0

(1)若方程的一个根为1,求m的值。

(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

九年级数学教案篇2

分式方程

教学目标

1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

教学重点:

将实际问题中的等量 关系用分式方程表示

教学难点:

找实际问题中的等量关系

教学过程:

情境导入:

有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________

二、讲授新课

从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

这 一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程_ _____________________。

学生分组探讨、交流,列出方程.

三.做一做:

为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为 人,那么 满足怎样的方程?

四.议一议:

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程

分式方程与整式方程有什么区别?

五、 随堂练习

(1)据联合国《20xx年全球投资 报告》指出,中国20xx年吸收外国投资额 达530亿美元,比上一年增加了13%。设20xx年我国吸收外国投资额为 亿美元,请你写出 满足的方程。你能写出几个方程?其中哪一个是分式方程?

(2)轮船在顺水中航行20千米与逆水航行10千米所用时间相同,水流速度为2. 5千米/小时,求轮船的静水速度

(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

六、学 习小结

本节课你学到了哪些知识?有什么感想?

七.作业布置

九年级数学教案篇3

一、创设情境

1.一次函数的图象是什么,如何简便地画出一次函数的图象?

(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

二、探究归纳

1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

三、实践应用

例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

九年级数学教案篇4

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:powerpoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

?探究性质一】

思考:在等腰梯形中,如果将一腰ab沿ad的方向平移到de的位置,那么所得的△dec是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形abcd中,ad∥bc,ab=cd。求证:∠b=∠c

想一想:等腰梯形abcd中,∠a与∠d是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

?操练】

(1)如图,等腰梯形abcd中,ad∥bc,ab=cd,∠b=60o,bc=10cm,ad=4cm,则腰ab=cm。(投影)

(2)如图,在等腰梯形abcd中,ad∥bc,ab=cd,de∥ac,交bc的延长线于点e,ca平分∠bcd,求证:∠b=2∠e.(投影)

?探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形abcd中,ad∥bc,ab=cd,ac、bd相交于o,求证:ac=bd。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

?探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

九年级数学教案篇5

教学目标

1、知识与技能目标

学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

2、过程与方法

(1)经历一般规律的探索过程,发展学生的抽象思维能力.

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

3、情感态度与价值观

(1)通过有趣的问题提高学习数学的兴趣.

(2)在解决实际问题的过程中,体验数学学习的实用性.

教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

教学准备:

多媒体

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

情景:

如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在b处,恰好一只在a处的蚂蚁捕捉到这一信息,于是它想从a处爬向b处,你们想一想,蚂蚁怎么走最近?

第二环节:合作探究(15分钟,学生分组合作探究)

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.

学生汇总了四种方案:

(1) (2) (3)(4)

学生很容易算出:情形(1)中a→b的路线长为:aa’+d,情形(2)中a→b的路线长为:aa’+πd/2所以情形(1)的路线比情形(2)要短.

学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线aa’剪开圆柱得到矩形,前三种情形a→b是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.

如图:

(1)中a→b的路线长为:aa’+d;

(2)中a→b的路线长为:aa’+a’b>ab;

(3)中a→b的路线长为:ao+ob>ab;

(4)中a→b的路线长为:ab.

得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算ab?

在rt△aa′b中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.

第三环节:做一做(7分钟,学生合作探究)

教材23页

李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺,

(1)你能替他想办法完成任务吗?

(2)李叔叔量得ad长是30厘米,ab长是40厘米,bd长是50厘米,ad边垂直于ab边吗?为什么?

(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验ad边是否垂直于ab边吗?bc边与ab边呢?

第四环节:巩固练习(10分钟,学生独立完成)

1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?

2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离.

3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?

第五环节 课堂小结(3分钟,师生问答)

内容:

1、如何利用勾股定理及逆定理解决最短路程问题?

第六 环节:布置作业(2分钟,学生分别记录)

内容:

作业:1.课本习题1.5第1,2,3题.

要求:a组(学优生):1、2、3

b组(中等生):1、2

c组(后三分之一生):1

板书设计:

教学反思: