求面积的教案7篇

时间:2022-11-30 作者:Surplus 备课教案

优先准备好适合自己的教案是可以增加我们在课堂上与学生的互动的,在写教案之前一定要明确自己的教学内容和教学进度,范文社小编今天就为您带来了求面积的教案7篇,相信一定会对你有所帮助。

求面积的教案7篇

求面积的教案篇1

教学目标:

1.通过教学活动,认识有些数据改写单位的必要性。

2.掌握数据改写的方法。

3.引导学生关注较大数据的实际意义。

教学重点:

体会某些数据改写单位的必要性,能用万、亿为单位表示大数。

教学准备:

在报刊杂志等媒体中收集一组有关国土面积、西部情况、海洋资源的大数的信息。

教学过程:

一、 体会数据改写的必要性

教师出示从媒体收集来的一组数据改写的实例。让学生比较同样的数据为什么要用不同的方法表示,让学生体会到数据改写的必要性。

二、 探索改写方法

1. 出示中国地图,了解一些省、市、自治区的土地面积。

让学生读出这些面积,问:如果要记录方便,这些数据可以怎样进行改写?

2. 学生先独立思考,再小组交流改写的方法。

3. 完成试一试第1、2题:进一步巩固改写的方法。

三、 巩固与应用

练一练第1题:先请学生说一说我国西部各省、市、自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的基础上再请学生改写成以“万”为单位的数。

练一练第2题:先让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。

四、 作业

收集有关森林面积方面的数据。

板书设计:

大数的改写

为了读数、写数方便,有时需要把整万、整亿数写成以“万”或“亿”为单位的数。

9600000 = 960 万

10000000000 = 100 亿

求面积的教案篇2

教学内容:

人教版九年义务教育六年制小学数学第六册123~124页。

教学目的:

1.引导学生自己去实验发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确地计算长方形的面积。

2.通过教学初步培养学生提出问题、分析问题、解决问题的能力。

3.渗透实验——发现——验证的学习方法教学,发挥学生的主体性,为今后学习其他平面图形面积的计算打基础。

教学重点:

理解掌握长方形面积的计算公式。

教学难点:

引导学生通过实验,探究得出长方形面积的计算公式。

教学结构:

采用“自主探究式”教学模式结构进行教学。

教学过程:

一、创设情境、导入新课

1.师:同学们,上节课我们学习了有关面积的知识(板书:面积),常用的面积单位有哪些呢?

生:常用的面积单位有平方厘米、平方分米、平方米。

2.师:这是一个长方形纸板,要测量它的面积,你认为用哪一个面积单位比较合适?用1平方分米的正方形怎样去测量?

根据学生的回答电脑演示测量过程,完成填空:这个长方形含有( )个1平方分米的正方形,它的面积是( )平方分米。

3.播放录像,谈话导入。

师:同学们,用面积单位直接去量,可以得到这个长方形的面积.但是,在实际生活中,如果要测量篮球场的面积、高楼墙面的面积、游泳池池面的面积……也用面积单位一个个去量,那可太麻烦了。所以,我们就要寻找一种更好、更简便的方法来计算面积,这节课我们就来学习长方形面积的计算。(完成板书:长方形面积的计算)

[评析:现代小学数学课堂教学必须让数学知识和学生的生活实际贴近再贴近,教者在导入新课时捕捉住生活中的几个场景,通过录像呈现出高楼、篮球场、游泳池的长方形块面,鲜艳生动的画面,具体可感的生活实际场景,引起了学生新知的欲望:是呀,用面积单位直接量长方形的面积,这种办法在实际生活中太麻烦,也是行不通的。怎么办呢?这样就引出了一个数学问题:应该寻找一个简便地计算长方形面积的方法。]

二、提出问题、确定目标

1.师:看了课题,你们想知道哪些知识?

根据学生的回答老师归纳:

(1)计算长方形面积的方法是什么?(板书:方法)

(2)学了长方形面积计算的方法有什么用?(板书:应用)

师:这节课,我们就围绕同学们提出的这两个问题进行学习,希自己动脑,小组合作,共同来解决。

[评析:问题是学习的动力,有了问题学生才有学习的欲望,学习的目标。而教师把提出问题的主动权让给学生,又把寻找答案的主动权还给学生,学生探求奥秘的情感得到充分激发。]

三、实践探究、寻找方法

(一)材料,启发大胆猜想。

出示长2厘米、宽1厘米的长方形。

(1)师:这个长方形长和宽分别是多少呢?

生:这个长方形长是2厘米、宽是1厘米。

师:长2厘米,也就是长所含的厘米数是2,宽1厘米,也就是宽所含的厘米数是1。

(2)把这个长方形的长和宽通过多媒体手段进行图形变化,得到四个大小不同的长方形。

(3)师:如果把一个长方形的长和宽不断地变化,可以得到多少个大小不同的长方形?

生:无数个。

师连问:通过这个长方形的变化,你们觉得长方形的面积可能和什么有关呢?请你猜一猜?

生a:和长有关。

生b:和宽有关。

生c:长方形的面积可能与长和宽有关。

[评析:教师通过一组感性学习材料,适当进行启发,使学生的思维有了一定的指向和集中。学生凭着对学习材料的直接反应作出了大胆的设想。避免了学生盲目的猜测,同时又唤起学生主动参与学习,探究知识的欲望。]

(二)分组实验,发现计算方法。

1.师点拔:长方形的面积是不是与长和宽有关呢?我们可以做个小小的实验。(板书:实验)

师:要测量这些长方形的面积,你们需要什么工具呢?

生:我们需要1平方厘米的正方形。每组派代表领取1平方厘米的正方形。

师布置实验要求:测量时,由小组长负责,小组内两个两个分工合作,l号、3号、5号负责测量,2号、4号、6号记录结果。

2.各组测量,记录测量结果。

3.汇报测量结果后,各小组长带领组员认真观察表格,并对思考题展开积极讨论。

思考题。

从上往下:

长所含的厘米数有什么变化?

宽所含的厘米数有什么变化?

长方形面积所含的平方厘米数有什么变化?

从左往右:

长方形面积所含的平方厘米数和长方形的什么有关?

它们是怎样的一种关系?

4.各组汇报讨论结果,出示学生讨论后的发现:长方形面积所含的平方厘米数正好等于长和宽所含厘米数的乘积,齐读。

5.发现计算方法。

师:通过这个实验,你们有没有发现用更简便的方法来计算长方形的面积?

生:只要用长乘以宽,就能得出长方形的面积。

师:这位同学真了不起,通过实验,发现了一个计算长方形面积的方法(板书:发现)。你叫什么名字哪我们就把这个发现命名为×××的发现。

[评析:在这一探究发现的过程中,学生通过自己动手和动脑,获得了认识。并经过启发、讨论和独立思考、学生主动参与、积极探究,获得了长方形面积计算的方法,学生认识水平、实践能力和创新意识从中得到了培养。]

(三)分类验证,确认计算方法。

1.师:这个发现是否准确无误呢?这个方法是否对计算所有的长方形的面积都适用呢?我们还要对这个发现进行验证。(板书:验证)

2.布置验证要求:出示5个大小不同的长方形,请各级组长任选一个长方形,组内同学一起来验证。

3.学生运用刚才的发现进行验证。

4.交流验证的结果。

师:通过验证你们认为这个计算方法正确吗?

生:我认为这个计算方法完全正确。

师:你为什么这么认为呢?

生:我先用×××发现的计算方法算出这些长方形的面积,再用1平方厘米的正方形直接测量出这些长方形的面积,两种方法的结果是一样的,所以,我们认为这个计算方法是正确的。

师:在各小组的努力下,我们证实了×××的发现是正确的,让我们用响亮的掌声向他表示祝贺!

[评析:长方形的面积计算公式是学生通过一次实验而发现的,是不能成为科学发现的结论,还必须通过“验证”这一环节,使学生明白在任何一种发现活动中,新的认识、新的结论不能盲目、划率地断言,必须要有充分的科学依据。教者设计达一教学环节,既渗透了科学探究的一般方法、更重要的是培养学生一丝不苟、实事求是的严谨科学态度。]

四、归纳、提示学习方法

1.师:学到这儿,同学们知道计算长方形面积的方法了吗?

生:知道,长方形的面积等于长乘以宽。

2.师:刚才,我们是怎样找到这个计算方法的?

生:我们先做了一个小实验,得到了一个发现,然后大家一起验证,证明这个发现是正确的,找到了长方形面积的计算方法。

师:同学们说的真好,实验——发现——验证这种学习方法对我们的学习有很大的帮助,希学习新本领时,经常想起这种方法,用好这种方法。

[评析:整堂课的主体性学习,首先是长方形面积的计算方法的掌握,其次是学习“实验——发现——验证”的学习方法,后者的学习方法的指导对学生今后的发展来说更为重要。]

五、应用深知、巩固深化

1.应用公式,计算长方形的面积。

(1)教科书第125页练习中的第1题。

(2)教科书第124页做一做。

2.应用公式,解决生活中的实际问题。

(1)回到导入题,出示游泳池的画面,给出数据,请学生计算游泳池池面的面积。

(2)师:长方形是一种很常见,很实用的图形,在我们的周围随时随地都可以看到长方形,比如,国旗的面,黑板的面等等,同学们想测量一下藏在我们身边的一些长方形的面积吗?同桌两个合作,找到长方形的面,进行测量,一边测量,一边把结果记录在测量纸上。

生测量后各组交流测量的情况。

师:看来,同学们通过这节课的学习,已经能够初步解决一些实际生活中的问题了,老师真为你们感到高兴。

(3)师:同学们,前两天,老师遇到了一件麻烦事,我办公桌上的一块台玻璃面积是24平方分米,不小心被打破了,我想配一块大小相等的玻璃,你们帮我算算看它的长和宽分别是多少呢?

生a:长8分米,宽3分米。

生b:长6分米,宽4分米。

师:你们是怎么知道的?

生c:只要想()×()=24(平方分米)

师:同学们真行,一下子帮钱老师想出了好几块面积相等的玻璃。可是钱老师要配的玻璃不光大小相等,形状也要相同,那它的长和宽究竟是多少呢?

生d:这块玻璃虽然碎了,但它的宽没有破损,所以只要先量出它的宽是多少,再用面积除以宽就能算出长是多少了。

师:这位同学生活经验真丰富,回答得好极了。

[评析:通过自主探究,获得长方形面积的计算公式后,教者设计了一些应用性练习,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力。整堂课临近结束之际,教者又创设了一个生活情境:玻璃被打破了,配置大小相等的玻璃,它的长和宽是多少呢?这是一个颇具开放性的问题,学生的思维有效地得到发散。学生思维发散后,教者话锋一转:玻璃的面积不光要相等,而且形状也要相同,它的长和宽究竟是多少呢?这个实际生活问题得以解决,既丰富了学生的生活经验,同时又提高了学生解决实际问题的能力。]

求面积的教案篇3

教学目的:

1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

教学重点:

理解和掌握圆面积的计算公式的推导过程

教学难点:

圆面积计算公式的推导

教学过程:

一 、创设情境,提出问题

( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

二、引导探究,构建模型

a:启发猜想

师:羊吃到草的最大面积最大是圆形:

1、这个圆的面积有多大猜猜看;

2、试想圆的面积和哪些条件有关?

3、怎样推导圆的面积公式?(生试说)

b:分组实验,发现模型

学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

1、你摆的是什么图形?

2、你摆的图形与圆的面积有什么关系?

3、图形各部分相当于圆的什么?

4、你如何推导出圆的面积?

请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。

三、 应用知识,拓展思维

1师:要求圆的面积必须知道什么?

2 运用公式计算面积

a完成羊吃草的面积

b完成课后“做一做”

c一个圆的直径是10厘米,它的面积是多少平方厘米?

d找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

3应用知识解决身边的实际问题(知识应用)

下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

四 归纳总结,完善认知

今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

求面积的教案篇4

教学目标:

1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3.渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

教具准备:

多媒体课件二套,圆片。

一。情景导入

1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)

师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。

(板书:圆的面积)

2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)

师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?

生:这堂课我们要学习圆的面积是怎样求出来的。

生:学生圆的面积公式。

师:你们知道圆的面积公式后,你们还想到什么问题?

生:圆的面积公式根据什么推导出来的。

师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。

(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)

二、动手操作,探索新知

1. 猜测(每项用课件出示)

师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?

生:不等。

师:为什么?

生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。

师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?

生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。

师:圆的面积和正方形比较谁的面积大?

生:圆的面积大

师:可以观察出圆的面积范围在2r2-4r2

(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)

2. 回忆旧知,

师:圆能不能直接用面积单位支量呢?为什么?

生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。

师:该怎么办呢?(教室沉默)

师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)

师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?

生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)

师:这个办法很好。那么把圆形转化成什么图形呢?

[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]

3.动手操作

(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)

师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)

(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?

生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)

师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示

(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)

学生汇报讨论结果。生答师继续演示课件。

生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长宽

所以圆的面积=周长的一半半径

s=r

s=r2

师:结合公式s=r2,说说圆的面积是怎样推导出来的?

(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)

生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。

因为 三角形的面积=底高2

所以 圆的面积=周长的半径的4倍

s=4r2

s=r2

师:我们用三角形也推出了圆的面积公式 s=r2 。同学们还有其它图形来验证吗?

(5)生:我们把圆转化成梯形来验证。(课件演示)

生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。

因为梯形的面积=(上底+下底)高2

所以圆的面积=周长的一半半径的2倍

s=2r2

s=r2 用梯形的面积

3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(s=r2)

我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:s圆=r2。

唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!

圆的面积必需要具备哪些条件?

[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]

(三)课后巩固

1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。

(照应了开头,又学练习了面积的计算。)

2、 根据下面条件求出圆的面积

r =5分米 d =3米

3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?

(用学到的知识来解决生活中的问题,培养学生的应用能力)

(四)师:这堂课大家学到了什么?有什么收获?

(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)

[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

求面积的教案篇5

【第一课时】 圆的面积

一、 教学目标

1.知识与技能

理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。

2.过程与方法

引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。

3.情感态度与价值观

通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。

二、教学重点

正确计算圆的面积。

三、教学难点

圆面积公式的推导。

四、教学具准备

课件、学具。

五、教学过程

(一)情境导入

1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?

今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)

2.看到今天的课题,你都想知道什么?

3.什么是圆的面积?在哪?摸摸看。

(学生摸手中圆形纸片,并用手指出圆的面积)

过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。

(二)复习旧知识

1.你还记得我们已经学过了哪些图形的面积求法吗?

(生:长方形、正方形、平行四边形、三角形、梯形)

2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)

3.问:其它图形呢?(学生简要叙述其他面积推导过程)

4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。

(三)学习新课

1.请你猜猜看,圆的面积公式应该怎么推导出来?

(生:转化成已知的图形进行推导)

2.怎么转化?想想办法。任意的分成几份行吗?

(生:沿圆的直径将圆平均分成若干份)

3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:

(1)以组为单位,先摆图形。

(2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。

(3)有问题及时记录,以便讨论。

(学生动手拼摆并贴在白纸上)

4.你们遇到什么问题了吗?

(生:边不是直的,是弯的)。

5.谁能帮助他解决这个问题?

(学生谈自己的想法)

6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)

?可使用圆的图片27】

7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?

(学生谈自己的想法)

8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。

(学生谈自己的想法)

9.汇报不同推导方法:

转化成长方形的:

长方形的面积=a × b 圆的面积=c×r 2

=π r × r

=π r 2

转化成平行四边形的:

平行四边形的面积= a × h

圆的面积= c × r 2

=π r × r

=π r 2

转化成三角形的:

三角形的面积= 1× a × h 2

圆的面积= 1c×4r 24

c× r 2 =

=π r 2

转化成梯形的: 梯形面积=1×(a+b)× h 2

15c3c×(+)×2r 21616

1c××2r 22

c× r 2圆形面积= ==

=π r 2

10.观察一下,这些推导过程有什么相同的地方?

(生:都是将圆转化成已知图形去推导的)

11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。

现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)

(四)巩固练习

1.求圆的面积(单位:厘米)

r=3 答案:s=28.26(平方厘米)

d=20答案:s=314(平方厘米)

c=125.6答案:s=1256(平方厘米)

2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?

答案:3.14×22 =12.56(平方米)

3.判断

(1)直径是2厘米的圆,它的面积是12.56平方厘米。()

(2)两个圆的周长相等,面积也一定相等。()

(3)圆的半径越大,圆所占的面积也越大。()

(4)圆的半径扩大3倍,它的面积扩大6倍。 ()

4.听故事解题:

巴依老爷买来一群羊。

巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。

阿凡提说:“老爷,这个长方形羊圈太小了!”

巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”

阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”

同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。

(五)小结

今天这节课你有什么收获?

【第二课时】 圆环面积

一、 教学目标

1.知识与技能

掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。

2.过程与方法

在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。

3.情感态度与价值观

进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。

二、教学重点

圆环的特征、圆环面积公式的推导及运用。

三、教学难点

灵活运用圆环面积的计算方法解决相关的简单实际问题。

四、教学具准备

课件、学具。

五、教学过程

(一)学习方法回顾、铺垫回忆一下

我们在推导圆面积计算公式时用到了什么学习方法?

(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)

这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会

想 会

新 旧

这节课我们继续用这种方法研究新问题。

(二)创设实际应用的问题情境

1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?

(1)动画光盘

(2)歌曲光盘

(3)空白封面光盘

2.想知道这张光盘的内容吗?我们一起来看看。

欣赏学生的校园活动照片。

这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?

3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。

4.小组内摸一摸准备的光盘实物,再让学生实投指一指。

师课件演示(由实物抽象出线条图形、涂色图形)

?可使用圆动画14】

5.这个图形有什么特点?

生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)

6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。

板书课题:圆环

外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。

求面积的教案篇6

教学目标:

1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

教学重点:

运用所学的知识解决简单的实际问题。

教学难点:

运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用c÷π÷2来求出圆柱的底面半径)

二、实际应用

1、练习二第13题

(1)复习长方体、正方体的表面积公式:

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。

2、练习二第7题

(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

(2)学生独立完成这道题,集体订正。

3、练习二第9题

(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

4、练习二第16题

(1)学生读题理解题意后尝试独立解题。

(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。

5、练习二第19题

(1)学生小组讨论:可以漆色的面有哪些?

(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。

三、布置作业

练习二第8、10、15、17、18及20题完成在作业本上。

板书: 圆柱的侧面积=底面周长×高

圆柱的表面积=圆柱的侧面积+底面积×2

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

教学反思:

求面积的教案篇7

教案设计

设计说明

面积的概念是贯穿于整个单元的核心内容,是学习其他相关内容的重要基础。为了让学生真正理解面积的意义,扎实地掌握面积单位,本节课在设计上从以下几方面入手:

1.巧设“问题情境”,引发学生的认知冲突,激发学生学习新知的积极性。

美国数学家哈尔莫斯曾经说过:“问题是数学的心脏”,有了问题,思维才有方向,才有动力。

新课伊始设计了阿凡提的故事,激发了学生的学习兴趣,接着为了让学生理解引进面积单位的必要性,通过比较平面图形的大小,设计了一系列矛盾冲突,每解决一个矛盾,就向目标迈进一步,最后想到需要有统一的标准,就自然地引进了面积单位,而且对后面讲的人们规定的常用面积单位也就容易理解了。这样,不断激发学生的认知冲突,使学生的思维一直处于积极探究之中,体现了学习的主动性。

2.注重对面积概念认识的全面性。

在教学中,引导学生通过动手摸一摸身边熟悉物体的面,直观体会和发现物体的面有大有小。在摸字典的封面和侧面时,让学生明白不仅物体的上面、正面有面积,侧面也有面积,在比较两个曲边图形以及摸橘子的表面时,明确曲边图形、曲面也有面积。在获得多种感性认识的基础上,揭示面积的概念。动手摸面和体会面的大小也有利于与前面学习的长度进行区分、比较。

3.让学生通过动手操作,亲身实践,感受用面积单位表征面积。

通过让学生用三种不同的图形测量两个长方形的面积这一过程,从而感受用正方形作面积单位的合理性,进而学习面积单位1平方厘米、1平方分米和1平方米。让学生动手摸一摸,感受不同单位的大小,并联系生活实际,加深对面积单位的理解。

课前准备

教师准备 ppt课件 米尺 大小、颜色不同的长方形彩纸(面积分别为1平方厘米、1平方分米、1平方米的长方形、正方形、圆、等边三角形)

学生准备 大小、颜色不同的长方形彩纸(面积分别为1平方厘米、1平方分米、1平方米的长方形、正方形、圆、等边三角形)

教学过程

⊙创设情境,提出问题

师:同学们,你们喜欢阿凡提吗?让我们听一听阿凡提的故事吧!

课件播放:……巴依老爷想无偿占有阿凡提的院子,可阿凡提不同意。因此两人发生了激烈的争吵。最后,阿凡提和巴依老爷签了一份契约:“将自己院子的60米以10元钱卖给巴依老爷。明日就将院子的60米交给巴依老爷,永不反悔。特此证明。”第二天,阿凡提接过巴依老爷的10元钱,哈哈大笑,巴依老爷这才大呼上了这份契约的当。但他只能白白付出这10元钱了。

师:同学们,你们知道这份契约有什么问题吗?

预设

生1:我觉得问题出在60米上,因为60米只表示长度。

生2:60米表示线段的长度,巴依老爷只能得到一条线段那么细的地,就等于没有得到。

师:你知道这份契约到底该怎么改才是正确的吗?今天我们就来研究这个问题。

设计意图:良好的开端是成功的一半,教学用学生喜欢的故事巧妙引入,调动了学生学习的积极性,使学生能够快速地进入学习状态。

⊙操作感受,认识面积

师:同学们,你们小时候很喜欢玩拍手游戏吧!今天,谁来和老师拍手?在拍手时,两只手碰击的地方就是手掌面,请大家比一比,是老师的手掌面大,还是你们的手掌面大呢?在生活中,很多物体的面和手掌面一样,也有各自的大小。

1.感知面积的意义及物体表面的面积。

(1)观察教室前面的黑板面和国旗的表面,说说哪一个面比较大。

学生发言之后,教师明确:黑板表面的大小就是黑板面的面积,国旗表面的大小就是国旗表面的面积。

(2)数学书的封面和课桌的桌面哪个大?大一些还是大得多?再看看课桌的桌面与地面,你有什么话要说?

(3)生活中的物体都有表面。(板书:物体的表面)在数学中,我们把物体表面的大小叫面积。(板书:面积)

(4)(师再次摸数学书的封面)谁能像老师这样摸一摸,说一说?桌面的大小就是什么?什么是黑板表面的面积?什么是教室地面的面积呢?(数学书封面的面积比黑板表面的面积小)

(5)(师拿出数学书)刚才我们说课桌桌面比数学书的封面大得多,也就是说课桌桌面的面积比数学书封面的面积大得多。反过来可以怎么说?(数学书封面的面积比课桌桌面的面积小得多)

(6)手掌的面积指的是什么?脚掌的面积呢?你还能举例说一说身边物体表面的面积,并比一比哪个面积大,哪个面积小吗?

小结:刚才我们通过看一看、摸一摸、比一比、说一说,知道了物体表面的面积有大有小。

设计意图:建构主义认为:学生的建构不是教师传授的结果,而是通过亲身经历,通过与学习环境的交互作用来实现的。“面”是什么?说不清,道不明,但只要动手“看一看”、“摸一摸”、“比一比”,学生就能做到心中有数了。在大量直观、实践、体验活动中,学生能实实在在地感受到“面”是什么,进而归纳出面积的意义。使学生初步认识面积,并用丰富的实例,帮助学生建立面积的概念。

2.感知封闭图形的面积。

师:这里有四个图形,有一个图形与其他三个图形不同,你发现了吗?(课件出示三个封闭图形,一个不封闭图形)

说明:不封闭图形的大小是不确定的,要研究图形的大小,这个图形必须是封闭的。

师:大家能看出另外三个封闭图形,哪个图形的面积大,哪个图形的面积小吗?

小结:看来不但物体的表面有大小,封闭图形的面积也是有大小的。

师:你能用自己的语言说一说什么叫面积吗?

(生发表意见后,师出示课件并板书:物体的表面或封闭图形的大小,就是它的面积)

3.用丰富的实例,进一步完善对面积的认识。

(1)摸摸字典的封面和侧面,说说哪一个面的面积比较小。

(2)观察下面两个图形,说说哪个图形的面积大。

(3)为学生提供一个橘子,请学生摸一摸橘子的表面,说说什么是橘子表面的'面积。

(4)将数学书按不同方式摆放,说说封面面积的大小是否有变化。