人教版数学五年级教案6篇

时间:2022-10-24 作者:Animai 备课教案

作为教师的你,一定也想过到底什么样的教案才是有意义的吧,教案的内容一定要和我们的教学任务息息相关才行,下面是范文社小编为您分享的人教版数学五年级教案6篇,感谢您的参阅。

人教版数学五年级教案6篇

人教版数学五年级教案篇1

教学内容:

教材第61~62页练习十四第6、9、10、11、12题。

教学目标:

1.通过练习,使学生熟练掌握估算方法,提高口算速度。

2.通过估算步骤的推导,初步培养学生的类推能力;能正确进行口算,培养思维的灵活性,促进思维条理化。

3.结合形式多样的练习,培养学生学习数学的兴趣,积淀数学意识;人人参与口算,使学生佯称积极动脑、认真口算的良好学习习惯。

教学过程:

一、口算练习

1、练习十四第6题。

比一比,那组摘得多?

2、练习十四第9题:夺红旗小游戏。

以小组为单位,按箭头号所指的方向开始计时。请优胜组代表说一说你怎样估算的。

3、练习十四第12题。独立完成,小组交流。

二、估算练习

1、练习十四第7题。

(1)出示统计表,提出问题。

(2)学生独立完成。

(3)全班交流。

2、练习十四第8题。

(1)理解题意。

(2)小组合作,收集估算所需要的数据,估算结果。

(3)全班交流。

3、练习十四第11题。

(1)指导看图,弄清题意。

(2)独立完成。

(3)组织交流。

三、课堂小结:

通过练习,你有哪些收获?

教学反思:

人教版数学五年级教案篇2

(1)两个质数的和是39,这两个质数的积是( )。

分析 本题考查的是质数的意义及数的奇偶性等知识。

两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。

解答 74

(2)120的因数有( )个。

分析 求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。

解答 16

⊙探究活动

1.课件出示题目。

(1)一个长方体木块,长2.7 m,宽1.8 m,高1.5 m。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?

(2)学校六年级有若干名同学排队做操,3人一行余2人,7人一行余2人,11人一行也余2人。六年级最少有多少人?

2.明确探究要求。(小组合作、思考、交流)

(1)这两道题分别考查什么知识?

(2)怎样解决这两个问题?

(3)具体的解答过程是怎样的?

3.汇报。

(1)先汇报前两个问题。

预设

生1:第(1)题考查的是应用因数的知识解决问题的能力。

生2:第(2)题考查的是应用倍数的知识解决问题的能力。

生3:根据题意,正方体的最大棱长应该是长方体长、宽、高的最大公因数,所以先把相关长度转换单位,用整数表示,然后求长、宽、高的最大公因数。

生4:根据题意,六年级人数比3、7、11的最小公倍数多2,所以先求出3、7、11的最小公倍数,再加2就可以了。

(2)尝试解答。(关注学生求三个数的最大公因数或最小公倍数的情况,发现问题并及时点拨)

(3)汇报解答过程。(指名板演,集体订正)

预设

生1:2.7 m=27 dm,1.8 m=18 dm,1.5 m=15 dm。因为27、18、15的最大公因数是3,所以正方体的棱长最大是3 dm。

生2:因为3、7、11的最小公倍数是3×7×11=231,231+2=233(人),所以六年级最少有233人。

4.小结。

解答此类问题,关键要弄清考查的是因数的知识还是倍数的知识,同时要会求两个或三个数的最大公因数及最小公倍数。

⊙课堂总结

通过本节课的学习,掌握了因数与倍数的相关知识,我们学会应用这些知识解决实际问题,学以致用。

⊙布置作业

教材75页5、9题。

板书设计

因数、倍数、质数、合数

因数和倍数质数——质因数合数——分解质因数1公因数互质数最大公因数倍数——公倍数——最小公倍数能被2、5、3整除的数的特征。

人教版数学五年级教案篇3

设计说明

1.关注学生已有的生活经验。

?数学课程标准》强调关注学生已有的生活经验,把已有的经验和要学习的知识紧密结合。因此,本设计在学习新知之前鼓励学生说一说:关于年、月、日的知识,你已经知道了哪些?一是投石问路,可以较好地了解学生的认知起点;二是能充分挖掘学生身上的资源;三是创设一个关于年、月、日的知识情境,在不经意间为引发学生的疑惑作铺垫。

2.创设情境,联系生活,激发兴趣。

本设计创造性地使用教材,以学习生活中的数学、用数学知识解决生活中的简单问题为基本理念,从新课的引入到课后的练习,都将数学与生活紧密联系在一起,体现“小课堂、大社会”,让学生体会数学与生活的联系,激发学生学习数学的兴趣。

3.注重观察,引导发现,培养能力。

本设计通过年历卡及相关统计表,让学生在观察和发现中掌握年、月、日及大月、小月等知识,这样既激发了学生的参与兴趣,又让学生感受到自己是一个发现者、探究者,使学生在自我探究、自我发现中获取新知,成为学习的主人。

课前准备

教师准备 ppt课件

学生准备 20xx年、20xx年的年历

教学过程

⊙创设情境,引入新课

1.关于年、月、日的知识,你已经知道了哪些?

预设

生1:一年有12个月。

生2:有的年份有365天,有的年份有366天。

2.说一说记忆中美好的或有特殊意义的日子。(生自由汇报)

3.观察教材76页主题图,说一说年历上标注了哪些特别的日子。在这些特别的日子里,都用到了哪些时间单位?(年、月、日)这就是今天我们要学习的内容。(板书课题:年、月、日)

设计意图:选择学生感兴趣、熟悉的素材作为引子,以特别的日子为切入点,引导学生用数学的眼光观察,让学生充分感受到学习内容就在身边,使学生全身心地投入到数学活动中去。感受数学学习的价值,有效地激发学生的求知欲,拓展学生的思维。同时建立新旧知识的联系,加深对时间单位的理解,为下面的新知教学作铺垫。

⊙亲自实践,探究新知

1.教学例1。

观察20xx年、20xx年的年历。(课件出示)

思考:

(1)一年有多少个月?

(2)一年中哪几个月份有31天?哪几个月份有30天?

(3)2月有多少天?

2.师根据学生的回答板书。

(1)一年有12个月。

(2)一年中1月、3月、5月、7月、8月、10月、12月有31天,4月、6月、9月、11月有30天。

(3)20xx年的2月有28天,20xx年的2月有29天。

3.小结:我们把有31天的月份称为大月;有30天的月份称为小月;2月是一个特殊的月份,它的天数和其他的月份都不相同,所以2月既不是大月,也不是小月。

设计意图:通过认真观察20xx年和20xx年的年历,让学生自主发现并总结大月、小月的天数及2月的特殊性,提高学生的观察能力和归纳能力。

4.记忆大月和小月的方法。

(1)拳头记忆法。(课件演示)

①伸出左手,手背面向自己,握住拳头。从右边第一个凸起处开始数起,第一个凸起处是一月,凹下的地方是二月,接着以此类推数到七月,转回来,从数一月的地方接着数八月,一直数到十二月。凸起的地方就为大月,有31天;凹下的地方,除了2月,其他都是小月,有30天。

②请大家边看边实践。

(课件重复演示,学生实践)

(2)歌诀记忆法。

一、三、五、七、八、十、腊,三十一天永不差。

说明:腊,这里指腊月,一般指农历十二月,在这里代表公历十二月。

设计意图:利用多媒体教学,更加符合学生的思维水平。用歌诀帮助记忆,让课堂教学的形式“活”起来。

5.知识拓展:一年中,为什么有7个大月,4个小月?

师:每年大月有7个,小月有4个,这其中有一段有趣的历史小故事。(播放录音:大月、小月的由来)

(学生恍然大悟,原来这都是人为规定的)

设计意图:大月、小月的特殊安排使学生心中有一个大大的“?”。回溯历史,既解疑释惑,又丰富和拓宽了学生的视野,使数学学习渗透着浓浓的数学文化。以英文august(八月)与国王的名字(奥古斯都)印证八月的演变,令学生折服

人教版数学五年级教案篇4

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:

负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

b、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

人教版数学五年级教案篇5

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:初步认识正数和负数以及读法和写法。

教学难点:理解0既不是正数,也不是负数。

教学具准备:多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

b、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

① 上海的'气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(p4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

人教版数学五年级教案篇6

教材分析:

本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

学生分析:

在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。

学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的.现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。

教学目标:

1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

2、通过活动培养学生利用小组合作,探究解决问题的能力。

3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

教学重点:运用圆的有关知识计算。

教学难点:

结合具体问题,让学生独立思考,提高解决简单问题的能力。

关键:体会数学知识在体育中的应用。

教学过程:

一、汇报调查,引入课题(8分钟)

1、汇报调查情况

课前,我让大家调查运动场的情况,你们得到了哪些信息?

2、课件显示如下情境图:

师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。

师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。

3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。

二、结合实例、探究问题(24分钟)

实例一:

课件显示:

淘气和笑笑分别从a,b处出发,沿半圆走到c,d。他们两人走过的路程一样长吗?

(1)笑笑所走路线的半径为10米,她走过的路程是()米。

(2)淘气所走的路线半径为()米,他走过的路程为()米。

(3)两人走过的路相差()米。

1、理解题意

根据这幅情境图,你能获得哪些信息?指名回答。

2、小组讨论

先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。

3、全班交流

抽生汇报,教师板书。

实例2:

课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)

1、观察跑道由哪几部分组成?

2、在跑道上跑一圈的长度可以看成是哪几部分的和?

(板书:跑道一圈长度=圆周长+2个直道长度)

(二)简化研究问题:

1、85.96米是指哪部分的长度?一条直道吗?

2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

(三)寻求解决方法:

1、左右两个半圆形的弯道合起来是一个什么?

2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

(四)、动手解决问题:

1、计算圆的周长要知道什么?(直径)

2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。

引导学生将3.14159换成进行计算

汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。

4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米

师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。

三、巩固练习、实践应用(3分钟)

400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

四、拓展延伸、自我评价(5分钟)

1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

2、课后自学课本第45页你知道吗?

五、全课小结:

谈一谈,这节课你有什么收获?

六、布置作业