几何课教案6篇

时间:2022-10-04 作者:lcbkmm 备课教案

教案是教师为了更有力把握知识点事先制订的文字材料,认真制定一份教案,促使接下来的教学工作顺利,下面是范文社小编为您分享的几何课教案6篇,感谢您的参阅。

几何课教案6篇

几何课教案篇1

教学目标

1.知识与技能

(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;

(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.

2.过程与方法

(1)经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力.

(2)经历问题解决的过程,提高解决问题的能力.

3.情感态度与价值观

(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;

(2)倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.

重、难点与关键

1.重点:从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点.

2.难点:立体图形与平面图形之间的转化是难点.

3.关键:从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键.

教学过程

一、引入新课

1.打开多媒体,播放一个城市的现代化建筑,学生认真观看

2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?

二、新授

1.学生在回顾刚才所看的幻灯片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.

2.指定一名学生回答问题,并能正确说出这些几何图形的名称.

教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.

3.立体图形的概念.

(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.

(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)

(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).

(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?

(5)探索解决问题的方法.

①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.

②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.

4.平面图形的概念.

长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.

注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.

5.立体图形和平面图形的转化.

(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,让学生从不同方向看.

(2)提出问题.

从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?

(3)探索解决

问题的方法.

①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.

②进行小组交流,评价各自获得的结论,得出正确结论.

③指定三名学生,板书画出的图形.

6.思考并动手操作.

(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.

(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情.

7.操作试验.

(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.

(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系.

三、课堂小结

1.本节课认识了一些常见的立体图形和平面图形.

2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.

几何课教案篇2

教学设计思想:

本节内容是通过学生动手实践去培养学生的空间思维能力。在教学中,如果忽略了学生的动手操作而冷冷而谈,很容易让学生觉得几何很难,而对几何有厌学的状态。因此,在这节课中通过学生动手操作,将预先准备好的柱体和锥体进行展开和拼合,让学生在动手中体验立体图形是由平面图形所围成的,进而让学生通过展开的平面图进行探讨,总结出柱体和锥体的表面展开图的特点。同时通过动画演示,加深了学生的空间想像的印象,大大调动了学生的积极性。特别是一道思考题和互问互检自编题,让学生各显神通,发表自己的看法,创设情景,根据本堂课所学的知识编一些生动有趣的题,这是本节课中让我感受最深的一点。

教学目标:

1.知识与技能

进一步认识立体图形与平面图形的关系;

知道一个立体图形展开的方式不同,得到的平面图形也不相同,以及计算相关几何体的侧面积与表面积。

2.过程与方法

在学习中要多动手进行实物操作,多观察分析,体验由立体图形到展开图和由展开图到立体图形的变化过程。

3.情感、态度与价值观

加强动手操作能力,提高观察、分析能力。

发展空间想象能力。

教学重点:常见几何体的展开与折叠及其有关计算。

教学难点:常见几何体的展开与折叠及其有关计算。

教学方法:教师引导,学生自主学习。

教学媒体:电脑、投影仪、纸片、圆规、量角器。

教学安排:2课时。

教学过程:

第一课时:

Ⅰ.创设问题情景,引导学生观察、设想、导入新课

1.演示圆柱体与圆锥体的侧面展开图。(参看课件圆柱、圆锥)

[教学说明]:复习立体图形的侧面展开图为平面图形。

2.刚才演示的只是立体图形的侧面展开情况,但在实际生活中,常常需要了解整个立体图形展开的形状,例如要制作一个常见的粉笔盒(手举粉笔盒),只知道它的侧面展开图是不够的,因为它还有上下两个底,那么,将粉笔盒展开后是什么图形呢?

Ⅱ.学生通过直观感知、操作确认等实践活动,加强对立体图形的认识和感知

活动1:

某外包装盒的形状是棱柱,它的两底面都是水平的,侧棱都是竖直的(这样的棱柱叫做直棱柱)。沿它的棱剪开、铺平,就得到了它的平面展开图。

教师课前可以准备一个六棱柱的模型,现在给学生演示由几何体展开得到他的平面图形。

然后教师提出问题:

问题1:这个棱柱有几个侧面?每个侧面是什么形状?

问题2:这个棱柱的上、下底面的形状一样吗?它们各有几条边?

问题3:侧面的个数与底面图形的边数有什么关系?

问题4:这个棱柱有几条侧棱?它们的长度之间有什么关系?

问题5:侧面展开图的长和宽分别与棱柱地面的周长和侧棱长有什么关系?

教师通过实例展示,学生很容易回答上述问题(教师可以挑选中下等的学生回答)。

[教法]:上面所给的五个问题的结论,实际上是直棱柱的性质与特点,建议让学生通过观察模型进行直观感受。

活动2:

1.制作圆锥并计算其相关的量。

(1)在纸上画一个半径为6cm,圆心角为216的扇形。

(2)将这个扇形剪下来,按下图所示围成一个圆锥。

(3)指出这个圆锥的母线的长,并求圆锥的高和底面的半径(粘合部分忽略不计)。

第一问与第二问让学生自己亲自动手操作,教师巡视,发现问题时引导学生。

第三问再让学生思考,得出结论:圆锥的母线长恰是扇形的半径长,圆锥的底面周长是扇形的弧长。

设圆锥的底面半径为r,

在rt△sod中,

2.下图是四个几何体的平面展开图,请用纸分别复制下来,按虚线折叠,围成几何体,并指出围成的几何体的形状。

学生动手,通过实际动手操作,观察通过折叠,都能围成什么样的几何体。

学生回答:分别是四棱柱、四棱锥、三棱锥、三棱锥。

[教法]:目的是培养学生动手操作的能力。

Ⅲ.练习

1.下列各图是几何体的平面展开图,请按图中虚线进行折叠,并说出折叠后形成的几何体的形状。

2.下列图形分别是两个几何体的平面展开图,请分别将它们围成几何体,并说出这个几何体的形状。

答案:1.(1)正方体;(2)正方体;(3)三棱柱;(4)五棱柱。

2.圆锥和圆柱。

Ⅳ.课堂小结

本节课主要是通过学生亲自动手操作,了解棱柱的主要特点,了解棱锥、棱柱的侧面展开图,掌握各个量的关系。

板书设计:

课题:

一、创设情境,引入主题 三、练习

二、新授 四、总结

活动1:

活动2:

第二课时:

Ⅰ.师:上节课我们一起通过实践的方法了解了常见几何体的展开图,现在我们就在此基础上来进一步学习如何应用几何体的展开图。

活动1:

参看下面这个例题:

1.图37-38和图37-39分别是某几何体的三视图。(单位:mm)

(1)请分别说出它们所对应的几何体的名称。

(2)分别计算这两个几何体的表面积。

(3)小明认为,图37-39所示三视图所对应的几何体的表面积,就是图37-39中的两个主视图、两个左视图和一个俯视图的面积的和。你认为小明的想法正确吗?为什么?

教师与学生一起探究:

(1)分别为圆柱和底面是等腰三角形的三棱柱。

(2)圆柱的表面积是 。

首先,计算柱体三个侧面的面积。其中一个侧面面积为 20xx=800(mm2)。

另两个侧面面积是相同的,每个侧面的长为44mm,宽为 。

这个侧面的面积为 。

其次,计算两个底面的面积和:

所以,三棱柱的表面积是

(3)这种想法是不对的。三视图是一种正投影,受摆放位置的影响,各视图的形状与其所对应的几何体的表面形状可能不一致,因此,不能简单地用视图的面积去计算几何体的表面积。

[教法]:目的是体会几何体与其展开图之间的区别与联系。

2.一个外形为长方形的纸箱的大小如下图所示(单位:cm),一只昆虫要从纸箱的顶点a沿表面爬到另一个顶点b,它沿哪条路线爬行的距离最短?请说明理由,并求出这个最短距离。

观察下面小亮解答问题的过程,想一想他的解法是否正确。为什么?

小亮是这样回答的:

将纸箱看成长方体,它的平面展开图如图37-41所示。连结ab,根据两点间线段最短,可知线段ab就是昆虫爬行距离最短的路线。

在rt△acb中,根据勾股定理,有ab=

教师分析:从最后结论看,小明的解答是正确的,但他分析问题的过程还不全面。

因为从a处沿纸箱表明到b处有无数条路线可走。而供选择的最短路线只有3条。即

(1)昆虫沿面edca和面edbg从a处到b处,展开图如图37-41所示。最短距离是小亮所求的值。

(2)昆虫沿左侧面和上面edbg从点a到点b,展开图1所示。最短距离为

(3)昆虫沿面edca和面dbfc从点a到点b,展开图2所示。最短距离为

比较上面(1)(2)(3)的距离知,最短路线是沿面edca和面edbg从a到b的折线。

教师给同学们演示蚂蚁在几何体上爬行路线(参看视频:蚂蚁)

活动2:

师:通过上面例题的分析,我们思考这道题如何解答:

一个直六棱柱的上、下底面分别是边长为1cm的正六边形,侧棱长为10cm,请计算它的表面积。

让学生自己思考,通过画图来观察各个量之间的关系,然后计算。

Ⅱ.练习

1.用胶滚子沿从左到右的方向将图案涂到墙上,在下面给出的四个图案中,用图示的胶滚子涂出的图案是哪个?

2.一个棱柱的展开图如图所示,ab=3cm,ac=5cm,

(1)请指出它是几棱柱。

(2)请计算它的侧面积。

Ⅲ.课堂小结

本节课是在上节课所学的基础上,即通过几何体的展开图确定和制作立体模型,再在此基础上计算相关几何体的侧面积和表面积。

板书设计:

课题(2)

一、活动1: 活动2:

1.

二、练习

2. 三、小结:

几何课教案篇3

一、彻底搞清定义、定理、公理的真正含义

要想让学生写出思路清晰、层次分明的几何证明题的书写过程。首先最关键的一步就是要让学生彻底分清定义、定理、公理的题设和结论,真正理解其真实含义。只有这样,学生才能在以后的证明过程中,正确地利用它来证明相关结论。反之,如果你对定理的内容都没有真正理解,而是含糊其词,是是而非,或者本身就不知道有这样一个定理,那么你在以后的证明过程中,就不能正确地应用这个定理或者就不知道应用这个定理,整个证明过程就会陷入僵局。同时,我们还要让学生把握清楚定理的内涵,不能对定理的理解有模棱两可、含糊其词之感。例如,在学习等腰三角形的“三线合一”这一定理时,有些同学就理解不清,没有真正掌握其含义,甚至自己都感到有些困惑,致使在应用时出现一些小错误。我们都知道这个定理的正确用法是,在知道一个三角形是等腰三角形的大前提下,

其中“顶角的平分线”、“底边上的高”、“底边上的中线”三者知道一个,就可以得到另外两个结论。而有些没有真正理解其含义的同学就这样写道:(如图)

在△abc中

∵ab=ac,ad⊥bc,bd=cd∴ad平分∠bac

显然,这是不恰当的。原因就在于没有真正理解等腰三角形“三线合一”这一定理的内涵,应该去掉“的任一个。

二、加强三种几何语言的教学,特别是符号语言

几何语言包括三种不同形式的语言,即文字语言、图形语言、符号语言。对定理、公理的教学,我们老师不仅要让学生掌握定理对应的三种语言,还要培养学生对三种语言的转换能力。

由于三种语??

ad⊥bc”和“bd=cd”中的不同特点,在教学中各自发挥的作用也不相同。在三种语言中,符号语言是几何初学者最难掌握的一种,也是逻辑推理必备的能力基础,因为考试中的证明题要用符号语言来体现。

我们老师在教学中如何让学生掌握好符号语言呢?在教学某一定理时,首先要让学生在理解的基础上,结合图形能用自己的语言进行描述再引导学生如何用符号语言进行“翻译”。的点到角的两边的距离相等”这一定理时。

(即文字语言),然后

例如在教学“角平分线上首先,我们老师要引导学生用什么样的方法证明这一定理,然后引导学生用自己的话表述这一性质,最后训练学生如何用符号来描述这一定理。这一定理的题设中,关键的两点即“角平分线”和“角平分线上的点到角的两边的距离”,如何用符号表示呢呢?(如图),

?结论中的“相等”,又如何用符号表示

题设中的“两点”可以这样用符号表示:∠1=∠2,cd⊥ao,ce⊥bo,结论中的“相等”可表示为:cd=ce

如果我们以后用到这一性质时,就可以这样写了:∵∠1=∠2,cd⊥ao,ce⊥bo∴cd=ce

三、理清思路,做到层次分明

我们老师在批改学生的证明题时,常常会发现这样的现象:为了证明某一结论,假设需要通过两步“同等身份”的推理,

才能得出最后的结论,个别学生在证明时,往往两步的推理互相穿插,第一步证明的推理在第二步中有出现,第二步的推理在第一步中也有体现。也就是说,思路不清,条理不清晰。出现这种现象的原因还是在书写过程之前,思路不清、层次不分明。针对这种现象,我们老师要帮助学生细细分析清楚后,再让学生书写过程。例如有这样一道证明题:(如图)

已知:如图,矩形abcd的对角线ac、bd相交于点o,be‖ac,ce‖bd。

求证:四边形obec是菱形。

针对这一题目,引导学生通过分析后,发现这个题目只要证明“两大块”就行了,即证“ob=oc”和“四边形

obec为平行四边形”,然后再引导学生这“两大块”又分别怎样用符号语言表述就可以了。当然,这“两大块”的证明不分先后。通过这样的分析后,学生在书写时就不会出现证明“ob=oc”时出现“be‖ac”这样的“不速之客”了。

四、掌握几何证明题常用的分析方法

几何证明题常用的分析方法有综合法和分析法,

另外还有一种就是分析法和综合法的结合使用。那么我们在证明某一结论时,到底用上述三种方法的哪一种呢?这要根据具体的问题,具体的情况进行决定。有时一个待证的结论分析法也可以,综合法也可以,都比较容易找到解决问题的思路,但有时一个待证的结论,这两种方法都不奏效,都不容易找到解决问题的方法,这时我们不妨把这两种方法结合起来使用,或许能找到“突破点”。因此,我们老师要让学生在解决证明题的过程中,自己要注意总结和反思,灵活掌握上述的三种方法。只有这样才能在寻求解决问题方案的过程中游刃有余。

五、多鼓励学生

刚刚学习几何证明题书写的学生,在书写的过程中肯定要或多或少地出现这样或那样的错误。我们老师在对待这一问题时,不要急躁,要耐心地对学生进行讲解和引导,多鼓励、多表扬他们。不理想的推理步骤要不断改进,同时引导学生自己多领悟多反思一下。这样,学生就不会失去这方面的信心,他们会做得越来越好。

总之,对学生几何证明题书写的教学,我们老师要有足够的耐心,采取不同的教学思路和方法,引导和鼓励学生循序渐进地掌握正确书写的方法和技巧。只有这样,学生才能书写出思路清晰、层次分明的几何证明题书写过

几何课教案篇4

教学目标:

1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2,能区分两种不同意义的量,会用符号表示正数和负数;

3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量

教学过程(师生活动)设计理念

设置情境:

引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些“以前学过的数”够用了吗?下面的例子

师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是_,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严

密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

几何课教案篇5

设计说明

促进自主建构、优化认知结构是复习的重要任务之一。本节课是对第一单元、第三单元和第五单元知识的回顾与整理,其中观察物体,图形的旋转,长方体、正方体的特征及体积、表面积的计算是学生已有的知识经验。首先让学生用自己喜欢的方式对这部分知识进行梳理,让学生经历自主整理的过程,引导学生在分析、比较的基础上掌握相关知识之间的联系,帮助学生完善知识网络结构。学生整理知识可能是无条理的、有遗漏的,但通过对比、交流,进而修正完善,可以从总体上把握知识之间的联系,积累归纳整理的活动经验。然后让学生根据复习的知识提出一些问题,并自主探索解题的过程,使学生发现问题、提出问题、解决问题的能力得到提升。最后设置有梯度的练习,进一步巩固学生对这部分知识的掌握。

课前准备

教师准备 ppt课件

教学过程

⊙回顾整理

(一)请学生回忆本册教材中学习了哪些关于“图形与几何”方面的知识,先想一想,再对这些知识进行整理。(要求学生尽量详细地概括所学知识,鼓励学生用文字、画图、表格等形式表示)

1.学生独立回忆、整理所学的知识。

2.教师巡视,有针对性地帮助有困难的学生。

3.汇报交流。

(二)先请学生利用自己喜欢的形式(列举、表格、网络图等)把这些内容进行简单的整理,并在组内进行交流。再让每个小组推荐一位整理得最好的同学介绍整理方法。

1.根据学生的汇报,教师板书整理方法。

(1)尽量记录详细,避免漏掉内容。(包括文字、举例等)

(2)有意识地按照类别板书。(如下)

①观察物体:从正面、侧面、上面观察物体。

②长方体和正方体:

长方体

正方体

体积单位:m3、 dm3、 cm3。

容积单位:l、ml。

③图形的变换:

a.旋转的意义、性质和特征。

b.图案设计的基本方法。

2.展示比较好的整理方法。

(1)学生交流自己是如何整理的。

(2)学生进行互相评价。

(3)教师有意识地介绍几种比较普遍的整理方法。

设计意图:通过整理与复习,使学生进一步理解图形的变换和长方体、正方体的有关知识,使学生会区分体积和表面积两个概念,并能灵活运用这部分知识解决问题,培养学生的空间观念。

⊙深化练习,巩固提高

(一)基本练习。

1.教材116页2题。

学生以小组为单位进行讨论,然后汇报结果。

2.教材119页11题。

引导学生完成表格,教师订正。

3.课件出示教材117页3题。

学生以小组为单位进行讨论,然后教师通过课件演示,明确答案。

几何课教案篇6

活动目标:

1.通过对比,让幼儿感知圆形、三角形、长方形的基本特征,能够识别和区分三种几何图形。

2,在老师的指导下,能用数来描述图形。

3,让幼儿学会初步的记录方法。

4发展幼儿的观察力、想象力,

3过创设愉悦的游戏情节,运用多种感官来调动幼儿的思维、想象能力,发展幼儿的观察力和动手能力。

活动准备:

1.三种几何图形卡片若干,固体胶。

2.ppt几何图形拼组成的图片

3魔术箱、魔法棒。

活动过程:

1.开始部分:教师带幼儿做手指游戏,集中幼儿的注意力师:"小朋友们,今天,老师要带你们到图形王国去,那里啊,会变出好多好多有趣的东西,好了,我们先来做个小游戏,看哪个小朋友表现得最好。

"2.中间部分:用游戏的方式让幼儿认识三种几何图形(1)游戏:摸一摸"魔术箱"。

师:"小朋友们,图形王国到了,图形王国里有一只奇妙的箱子,你们看,就是这只魔术箱。(出示魔术箱)你们想不想知道里面藏的是什么秘密?好了,我们来看看这只魔术箱会给小朋友们变

教学反思:

中班幼儿已经认识了长方形、正方形、梯形、三角形、圆形、半圆形、椭圆形,对几何图形有着浓厚的兴趣。帮助幼儿进一步感知、并掌握有关几何图形的基本特征。充分调动幼儿的各种感官,满足幼儿探索发现、尝试创作的欲望,符合大班的年龄特点。