详细的教学反思才能帮助我们获得更多成长,为了方便回顾自己的教学质量,大家可以写好教学反思,以下是范文社小编精心为您推荐的分数墙教学反思优质7篇,供大家参考。
分数墙教学反思篇1
本单元的教学,分数乘法解决问题是一个重点资料。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的好处的应用。它是分数应用题中最基本的。不仅仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的好处。在帮忙学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮忙。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的潜力将会有很大提高。而下一单元的教学如果学生能根据题意画出适宜的线段图,对正确解答问题将会有很大的帮忙。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面――先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。
具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的好处解答。
在教学中,我强调以下几点:
(1)让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
(2)强化分率与数量的一一对应关系。并根据关键句说出数量关系。
(3)帮忙学生理解“一个数的几分之几”与“一个数占另一个数的几分之几”的不同。
对稍复杂的分数应用题,透过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的潜力。透过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜群众讲,更应注重学生个体表达,并且不必必须按照课本的固定模式,就应允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。
分数墙教学反思篇2
从事高中数学教学工作已将近两年的时间了。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,这对于刚刚接触高中教学的我来说,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,构成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德和素质的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,个性是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选取教学的策略、方法和媒体,把资料进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要透过师生的共同努力,使学生在知识、潜力、技能、心理、思想品德等方面到达预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,能够在黑板的一角将这些资料简短地写出来,以便引起学生的重视。讲授重点资料,是整堂课的教学高潮。教师要透过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还能够插入与此类知识有关的笑话,对所学资料在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的理解潜力。
三、根据具体资料,选取恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学资料的变化,教学对象的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识,也能够结合课堂资料,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习用心性,有助于学生思维潜力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
四、关爱学生,及时鼓励
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲资料的掌握状况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,能够对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
五、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有透过解决难题才能培养潜力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就透过超多的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内
在的规律,就让学生去做题,试图透过让学生超多地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中决定错误。不少学生说:此刻的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及潜力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
六、渗透教学思想方法,培养综合运用潜力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮忙学生掌握科学的方法,从而到达传授知识,培养潜力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就就应多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用
分数墙教学反思篇3
?分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。
在教学实践中继续采用&l数形结合&r的数学方法,帮助学生达成以上两个教学目标。对于今天的&l探究活动&r没有直接放手,这是因为学生对&l求一个数的几分之几是多少&r的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:
一、 引导学生通过用图形表示分数的意义,再用算式表示图形,深化&l求一个数的几分之几是多少&r的分数乘法意义,感知分数乘分数的计算过程。
二、 以1/5*1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过&l以形论数&r和&l以数表形&r的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、 学生运用数形结合的方法独立完成教材中的&l试一试&r,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。
通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将&l以形论数&r和&l以数表形&r两个方面有机的结合起来。只有完整的让学生经历数与形之间的&l互动&r,才能使他们感知&l数形结合&r,才能使他们能在解决问题时自觉地应用&l数形结合&r的方法。
分数墙教学反思篇4
本节课教学的是分数乘分数,重点是巩固和理解分数乘法的意义,探索分数乘分数的计算方法。由于五年级学生已有了一定的自学能力,所以课前已经有学生知道分数乘分数的计算方法,但只是知其然而不知其所以然,所以这节课要让学生理解分数乘分数的计算方法。
在教学实践中我采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。由于学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
1、先复习求一个整数的几分之几是多少,进一步使学生明白求一个数的几分之几是多少要用乘法,而且是用一个数乘几分之几,为后面顺利列算式求1/2的1/2及1/4的1/2作知识和方法的储备。
2、引导学生通过用算式表示图形,再用图形表示算式,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。在第一个情境中,先引导学生理解“第二次剪去剩余部分的1/2就是剪去1/2的1/2,第三次剪去剩余部分的1/2就是求1/4的1/2,结合线段图理解到1/2的1/2就是1/4,1/4的1/2就是1/8,列出算式就是1/2×1/2=1/4,1/4×1/2=1/8。在折一折中,以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后根据图形表示出算式的计算结果,这样做的目的是通过“以形论数”和“以数表形”的过程帮助学生巩固分数乘法的意义,体会分数乘分数的计算方法。
3、让学生运用数形结合的方法独立完成教材中的做一做,进一步达成以上目标,为总结分数乘分数的计算方法积累认知。整体教学的效果很好。
分数墙教学反思篇5
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
分数墙教学反思篇6
?一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。在教学中应如何突出重点,特别是要突破学生学习的难点,这一直是我们数学教师不断研究和探讨的问题。
本节课主要是讲行程问题,是学生最难解决的一类应用题,教材上只安排了一道例题(环形跑道中的追及问题),我根据教学的需要及学生的情况,对教材进行了适当的加工和处理,增加了几道例题,由直线上的相遇问题、追及问题,到环形跑道上的相遇问题、追及问题,由浅入深,层层递进。而分析寻找行程问题中的等量关系是本节课的难点,为此,我在教学中设计了两种不同的分析方法,一、画图分析,二、列表分析,这样可以帮助学生更好地寻找等量关系,从而更容易列出方程,通过这样的方法,使逐渐掌握解决行程问题的方法。
反思本节课的教学,有很多地方需要改进:
1.在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。但却忽视了学生的活动和交流,新课程标准下的教学,是要让学生有更多的机会进行探究、发现。让学生自己分析,相互探讨,哪怕是错了再进行纠正,学生对知识的掌握也会更牢固。在以后的教学中我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课除了要认真研究教材和设计好教学内容外,还要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探究,真正促进师生的共同发展。
2.在本节课的教学中我以师生共同探究为主线进行了教学,课堂上大部分学生积极参与,表现出学习的欲望和热情,但还有一部分同学学习的积极性不高,可能是课堂对他缺乏吸引力,这是值得我深思的,通过本节课,我对怎样激发学生的学习兴趣,让学生的思维动起来有了更深刻的体会。在今后的教学中,我要努力给学生充分的思考交流的时间,鼓励学生提出有价值的问题,抓住他们思维的闪光点。
分数墙教学反思篇7
分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。
分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。
数量关系的理解,要紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结 合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的分母,能约分的要先约分才比较简便。
分数乘法的应用,则要用画线段图的方式来帮助学生建立数量与分数之间的对应关系。 进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。
数学的理解是离不开图形的辅助的。图形和数量是数学学习的一对相互依附的对象。 要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。
在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位"1",但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学。
1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。
2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准, 让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
3、帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。
4、加强单位化聚方法的复习,如? 时=( )分 吨=( )千克。