解方程一的教学反思最新8篇

时间:2023-03-24 作者:Indulgence 教学计划

为了让自己在教学中的问题得到改善,一定要认真写教学反思,写好教学反思可以提高教师的教学质量,以下是范文社小编精心为您推荐的解方程一的教学反思最新8篇,供大家参考。

解方程一的教学反思最新8篇

解方程一的教学反思篇1

记得我以前上学的时候,解最简单的方程的方式是这样的:比如方程+5=8就是方程=8-5,方程=3。那时觉得很好懂,但是现在五年级课本上是这样的:方程+5=8,方程+5-5=8-5,方程=3。看起来比较复杂。开始接触到这个课程时看到教材例题中的解法感觉很疑惑,百思不得其解。为什么新课程的“解方程”教学要“绕远路”?如果单单从简单的加减乘除的方程来看,第一种方法无疑是简单易懂而且步骤少,而第二种方法就相对复杂了。那教材这样改的目的是什么呢?深入研究教参后我体会很深,明白了新课程数学教学要“瞻前顾后”的道理。

新课程的改革,更加注重知识的迁移和联系,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的。新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。所以虽然复杂,但是更容易掌握。

解方程一的教学反思篇2

纵观整节课教学,我认为已经基本把握教材的重难点。在讲解“方程的解”定义时,能从验算例子答案出发,让学生体会到“方程左右两边相等”的特征,从而能更好地理解“方程的解”的定义。

在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的解,让学生明白“解方程的各种方法,目的只有一个,那就是求出解,但不同的方法有自身不同的求解过程”着重让学生理解“求解过程”。

在这基础上,让学生讨论发现两个概念定义之间的区别。

在讲授“解方程:x+7=13”例题时,我安排一个成绩中等的学生上来解答(因为是新课,学生还没有接触过正确规范的书写格式,学生的求解方法和过程步骤,能代表整个班级的情况。况且学生的求解过程能起到反例的作用,为下面比较教学——从对比中认识正确的求解过程做好铺垫)

板书正确书写格式后,让学生通过比较发现该如何正确规范地求解方程的解。

整节课教学存在几点不足:

1、学生课堂练习量少。这与定义的教学花费太多时间有关。

2、对学生新课之前的求解方程的解的方法缺少关注。解方程是可以有很多方法的,需要鼓励学生的多向发散思维。

3、教师课堂上虽然提到“对于一个x的值,它究竟是不是方程的解呢?为什么?”,但还是缺乏相关练习,因为这一内容对理解“方程的解”有极强的意义。

?方程的意义》这节课与学生的生活有密切联系,通过本节课的学习,要使学生经历从实际问题中总结概括出数学概念的过程。让学生初步了解方程的'意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络。下面就结合这节课,谈谈我在教学中的做法和看法。

一、复习导入,激趣揭题

该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。

二、实践操作,建立方程模型

1.用天平创设情境直观形象,有助学生理解式子的意思

等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。

2、自主操作,提高能力,激发兴趣

在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。

三、实际运用,升华提高

在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。

本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生“说”的训练不够,应该给学生更多的表述的机会。

解方程一的教学反思篇3

今天对五年级上册《解方程》进行了教学。本课主要对教学例一和例二进行了教学。

一、本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。

二、在练习题的安排上也做了精心的安排,当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。

三、本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!

四、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。

五、学生对于方程的`书写格式掌握的很好,这一点很让人欣喜。

总之,“兴趣是学生最好的老师”,只要紧紧抓住这一点,教学质量的提高指日可待。

解方程一的教学反思篇4

我在教学“实际问题与一元二次方程”时设计了这样的一个教学环节: 问题1:如图,张大叔从市场上买回一块矩形铁皮,他将此铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米。现已知购买这种铁皮每平方米需20元钱,问:张大叔购买这种铁皮共花了多少钱?

?师生行为】:教师利用多媒体展示问题,用几何画板演示折合过程。学生在独立思考探究学习的基础上进行小组讨论,达成共识后小组代表发言,小组之间交流意见。教师选择有代表性的解题思路用实物投影展示,师生共同寻找错误纠正问题。教师最后归纳总结点评强调。

?设计意图】:从学生熟知的事实出发,创设问题情境,激发学生的数学学习兴趣和求知欲,为学习新知识创设良好的心理氛围和有利于认知的必要环境。教师利用富有挑战性的问题和现代化的教学手段演示,激起学生的好奇心,可以引发学生对问题的思考,使学生不由自主的参与到学习活动中来。

问题2:如图,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横竖彩条的宽度比为2/3,如果要使所有彩条所占面积是原矩形图案面积的三分之一,应如何设计每个彩条的宽度?

图① 图②

?师生行为】:给学生留有充分地自(主探究学习的时间,待学生有了自己的想

法后进行小组讨论,交流各组的方法,教师深入各小组,倾听他们的意见,组织

学生交流。发现学生中有代表性的错误、典型问题及好的解题方法,非常规的解题思路,教师通过实物投影展示给学生,让学生自己找出问题自己纠错,自己选择最优解题方案。

?设计意图】这样设计是要关注学生解决问题的多样性和合理性,关注学生运用所学知识解决实际问题的策略和能力。让学生着眼与问题的解决,激发其探究的欲望。教师在给学生主动参与、乐于探索的同时,对学生探究的结果给予及时的评价,让学生体会到成功的喜悦,产生后继学习的激情。

对本环节的教学反思:

一、在激发学生主体参与方面感到较为成功的几点:

1、利用多媒体创设问题情境,激发学生的学习兴趣

“兴趣是学生最好的老师”。学生之所以对数学感到枯燥、无味、怕学,其原因之一是由于数学知识本身的抽象性和严谨性所决定的,再者就是受传统教学手段和方法的局限,不能有效激发学生的学习兴趣。在信息技术的教学环境下,教学信息的呈现方式是立体的、丰富的、生动有趣的,面对如此众多的信息呈现形式,学生一定会表现出强烈的好奇心理,而这种好奇心一旦发展为认知兴趣,将会表现出旺盛的求知欲,极大提高学生的参与度。

2、强化学习过程,调动学生主动参与的积极性

课堂教学的核心是调动全体学生主动参与到学习的全过程,是学生自主学习,和谐发展的`教学过程。因此,数学课堂教学必须自始至终地引导学生积极地参与到数学学习的全过程,做学习的主人。在教学中教师要努力做到激发学生学习的兴趣,诱发学生学习的动机,点拨和指导学生参与学习的方法,创设时空保证学生参与学习的机会。

3、学习方式的转变的同时学生角色也在转变

重视探究性学习,但不排除接受性学习。加强小组合作学习的同时要注意培养学生独立思考问题的能力。所以在合作学习之前一定要让学生先充分地学习探究,经独立思考有了自己的想法后,再与组员探究、交流、解决问题。

二、教学中感到不足的地方和进一步优化的教学环节:

1、学习问题1时,课堂上有些基础较差的学生对“剪去一个边长为1米的正方形”这里的1米就是长方体箱子的高,理解不到位,对折叠后的长方体底面的长与宽表示不准确,虽然在多媒体上进行了演示,还是有部分同学理解不到位。如果事先让学生准备好矩形纸片让学生亲自动手去折叠成长方体箱子,那么学生对这道题的理解就更为深刻。

2、“一题多解”是数学教学中体现学生主动探究学习的一种典型代表,对于培养学生从不同角度、不同侧面去分析问题、解决问题,加深对教材和知识的理解,提高他们的学习能力是很有作用的。在问题二的教学中,留给学生自主探究的时间还是不足,由于害怕完成不了本课时的教学内容,对学生中出现的错误没有一一展示纠正,优秀的解题方案也没有给学生时间去理解消化吸收。如果在教学中能为学生提供更为广阔的自由活动的时间和空间,提供更为丰富的数学学习资源,放手让学生充分的自主学习主动参与,精选例题讲解,到巩固练习作业,每一教学环节都可以设置不同的层次,学生根据自身情况,选择性地进入相应层次,使教学能真正体现出学生主体作用。

教案是教材与课程标准的桥梁:

新课程理念下的教材给教师留下了更为广阔的创作空间,我们教师要“用教材教,而不是要教教材”。教师编写教案要根据学生实际、教学实际 、课标要求重组教材、编制教材,增加其探究性、思考性,为实施开发式、活动探究式、合作参与式学习方式创造条件。

解方程一的教学反思篇5

二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:

从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。

解方程一的教学反思篇6

我主讲了一节七年级的数学:实际问题与一元一次方程课,现将教学反思整理如下;

一、成功方面

1、本节课设计成学案的形式,有利于体现学生的主体地位,让学生充分参与到教学过程中来。

2、本节课的题目设计有利于学生理解商品销售问题中的标价、售价、进价、利润、利润率这些概念的含义及它们之间的关系,并能利用它们之间的关系来解题。

3、我把教材中的探究问题分解成三道题目,有利于学生由浅入深地掌握本节课的重难点。

4、教学方法采用学生先练教师后讲的模式,有利于培养学生的尝试意识,激发探究热情。

二、不足方面

1、对学生的学情把握不够好,简单问题强调、重复太多,耽误教学时间,没按预定的教学方案完成任务。

2、在从算术方法解决商品销售问题过渡到用方程方法解决销售问题时,设计不太好,学生不能自觉利用方程知识来解决问题。

3、思想理念放不开,对于探究问题可能有其他解法,实际上有学生也用了算术方法,但我没有给出评价,这样会挫伤学生学习的积极性。

二、努力方向

加强学习,厚积薄发;钻研教材,教法,一切教学活动的出发点都要把学生放在心上。

解方程一的教学反思篇7

在讲课的前一天,我把学案发给了学生,并利用自习时间让学生进行预习并讨论。本来我打算让学生回家学习,但有些学生没有完成预先制定的目标。但通过小组之间的讨论与学习,大部分学生基本能掌握利润,利润率,售价,进价,标价,打折等基本量的定义,以及了解它们之间的关系。上课时,我先用了几分钟时间由学生自由发言,说出打折等概念及其应用,接着介绍有关的概念和有关的关系式。在此过程中我发现学生虽然能说出它们之间的关系式但是不会灵活应用。于是我又出示了相对应的练习然后小组之间相互讨论包含了刚刚讲过的所有内容。并且先由学生自己解决,然后小组讨论落实结果。同时我深入倾听了几个小组的意见后重点讲解了错误较多的问题。

经过这几轮不同形式的练习,接着就是用一元一次方程解决打折销售问题了。解应用题的关键是找出题目中的相等关系,这也是最让学生头疼的难关。由于前面概念讲解的详细,相关练习做的较全面,所以大部分学生顺利找出了问题(一)中的相等关系,并应用它列出了所需方程。然后的几个问题是改变问题(一)中的已知条件,一题多变,以便考察学生对今天所学知识的理解和真正掌握情况。经过统计,在每个学生自己思考后的基础上,半数学生可以自己找出相等关系列方程,还有一部分学生经过小组组员的提示后也能列出正确地方程。他们在做完练习后,还总结出了用数学方法解决实际问题的规律和列方程解应用题的步骤,达到了本节课的教学目标。

经过本节课的教学,我觉得平时应用题教学时讲授时间偏长,学生自主学习时间较少,课堂生活单调,学生难以体验到学习的快乐。而本节课采用了先让学生社会调查身临其境,使他们充分体验生活中数学的应用与价值,感受数学与自己生活的密切联系。这样他们自己就有了学习的愿望,变被动为主动,这也正是我每节课希望达到的目标。因此,在后面的应用题教学中我还要多采用这种方法,以便提高学生的兴趣,更好的完成教学任务。

解方程一的教学反思篇8

今天所上的内容是《二元一次方程组》,本堂课主要两个内容:一个是二元一次方程组的概念并能在实际问题中找出相等关系列出方程组,另一个是二元一次方程组的解的概念。以前上这节课,我的基本流程是

(1)给出一个实际问题请同学们来分析题目,设出未知数,寻找相等关系,列出方程,当然前提是设两个未知数,得到一个二元一次方程组,然后给出概念,提醒学生要注意概念中是含有两个未知数的两个一次方程所组成的,接下来就给出几个判断巩固定义。

(2)给出二元一次方程组的解的定义,并举几个题目来巩固。

(3)做书本上的习题。这次备这节课时,我就想到以前上这课很没有意思,学生觉得内容很简单很枯燥,根据简单的实际问题来列方程组对他们而言也不是难事。在备课时我就从学生的角度去看教材,既然内容简单那就让学生自学为主。所以我今天上课的流程变成先出事两个问题情境(列二元一次方程组解决),然后直接给出本堂课的内容:二元一次方程、二元一次方程的解、二元一次方程组以及二元一次方程组的解的概念,请同学们根据名称思考,并举例说明。给他们几分钟时间思考以后,就请学生来当小老师,上黑板来讲,也有同学觉得小老师讲的不够清楚,又上来重讲的,一共请了3名同学,有同学提出的问题很简单,也有同学提出了一个引起大家争议的问题,就是x=3,x+y=4这样的方程组是不是二元一次方程组,在大家争论以后我给出了正确答案以及这个概念中的注意点。最后在请学生来总结今天所学到的主要内容和注意点。