长方体的表面积教学设计6篇

时间:2022-12-22 作者:Anonyme 教学计划

为了让课堂变得更生动,一定要将教学设计写好,认真写好一份教学设计,在接下来的教学中起着相辅相成的作用,下面是范文社小编为您分享的长方体的表面积教学设计6篇,感谢您的参阅。

长方体的表面积教学设计6篇

长方体的表面积教学设计篇1

教学目标

1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。

2、使学生会运用表面积的意义,解决生活中的一些简单实际问题; 能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

教学重难点

重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。

难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。

教学准备

教师:多媒体课件,长方体纸盒。

学生:长方体纸盒

教学设计

一、复习铺垫

同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?

生答。(教师强调面的知识)

二、创设情境 、引入问题

老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?

生:长方体纸盒的表面积。

师板书课题:长方体和正方体的表面积

师:看了课题同学们想问什么?

师生共议研究课题:

(1)什么叫长方体和正方体的表面积?

(2)怎样求长方体和正方体的表面积?

三、合作探究、学习新知

1. 探索长方体表面积的计算方法。

什么叫长方体的表面积呢?请看大屏幕。

多媒体出示长方体展开图。

师:同学们看完后有什么想说的?

生:围成长方体的是6个长方形。

生:长方体的表面积就是展开后6个面的总面积。

师归纳后板书:长方体或正方体6个面的总面积,叫做它的表面积。

师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?

多媒体出示长方体粘合图

师:同学们看完后,又想到了什么呢?

生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。

生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。

?着重引导学生体会: 求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕

多媒体出示长方体图形

师:现在同学们能求出它的表面积吗?

生:不能。

师:为什么?

生:没有数据。

师课件出示数据,引导学生把数据放到长方体相应的位置。

2.探究每个面的长和宽与长方体的长、宽、高有什么关系?

师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?

多媒体展示,引导学生讨论:

上、下每个面的长和宽分别是长方体的()和();

前、后每个面的长和宽分别是长方体的()和(); 左、右每个面的长和宽分别是长方体的()和()。

小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:

上、下每个面的长和宽分别是长方体的(长)和(宽);

前、后每个面的长和宽分别是长方体的(长)和(高); 左、右每个面的长和宽分别是长方体的(高)和(宽)。

3、尝试计算

问:现在你能求出做这纸盒至少需要多大面积的纸板吗?

学生尝试计算,出示活动要求:

(1) 小组讨论,想办法求出做这个纸盒需要多大面积的纸板。

(2) 把自己的计算方法和小组内的同学交流。

教师参与学生的活动。

反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问

学生板演后说明想法:

生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。

生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。

教师注意引导学生语言叙述的完整性,准确性。

师多媒体展示学生的汇报结论。

指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

4探究正方体的表面积计算方法。

多媒体出示:棱长为5厘米的正方体的表面积是多少?

学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6.

四,巩固新知、拓展运用

1、课件出示我会选,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。

2、课件出示说一说,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。

3、课件出示聪明的你,引导学生注意:

(1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);

(2)计算时,关键是找准数据。

学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。

4、课件出示攀登高峰,引导学生分析计算时应考虑几个面,问题课后讨论完成。

五、课堂小结

通过学习,你有哪些收获?还有那些不懂的问题?

长方体的表面积教学设计篇2

第一课时:

教学内容:p33—37

教学目的:

1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。

2、在探索学习中建立初步的空间观念,发展初步合情推理能力量。

3、培养学生的动手操作能力和共同研究问题的习惯。

4、通过亲身参与探索实践活动,去获得积极的成功的情感体验。

5、体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。

教学重点:长方体表面积计算的基本思路和方法。

教学难点:根据长方体的长、宽、高,确定每个面的长、宽是多少。

教具学具:多媒体课件、剪刀、长方体盒子、尺、硬纸板、火柴盒。

教学过程:

一、创设情境

同学们,老师今天给大家带来一件礼物,想把它送给这节课最爱动脑筋,最爱发言的同学,老师觉得这件礼物的盒子不够精美,你们能不能给老师出出主意?(学生说到给礼物盒子包上包装纸,教师说你的想法和我一样。)

想知道这张包装纸的大小吗?通过今天的学习,大家就会明白。

二、自主探索

分组操作,探索长方体的表面积的含义、并建立它们的联系。

同学们,现在请大家利用桌面上的长方体、剪刀,看看把一个长方体或正方体的纸盒展开是什么形状的呢?

请在展开图中,分别用上下前后左右标明6个面。

观察长方体展开图,哪些面的面积相等?每个面的长和宽与长方体的长、宽、高有什么关系?

学生分小组合作操作。

三、各小组学生交流汇报结果。(学生到实物投影仪上演示并汇报探索思维过程)可能有以下几种:

汇报一:

把长方体纸盒6个面剪开,并把相对的面摆放在一起组成三大部分。

要求出这个长方体的表面积,只要把这三部分面积相加,第一部分面积为"长×宽×2",第二部分面积分为"宽×高×2",第三部分面积为"长×高×2",得出:长方体的表面积=长×宽×2+宽×高×2+长×高×2。学生汇报后,演示这一种推导思维的全过程。

板书:长x宽×2+宽×高×2+长×高×2。

汇报二:

把长方体纸盒剪成面积相等的两大部分。

只要把这两大部分的面积相加,就可以求出这个长方体的表面积,第一大部分面积为

"长×宽+长×高+宽×高",而第二大部分面积与第一大部分面积相等,只要把第一大部分面积乘2,得出长方体的表面积=(长×宽+长×高+宽×高)×2。

师:同学们的这种方法真不错,请大家看屏幕演示。(演示这一种方法推导思维的全过程)板书:(长×宽+长×高+宽×高)×2。

汇报三:

把长方体纸盒的六个面剪成上下面和四周两大部分。

只要把这两大部分相加就可以求出这个长方体的表面积,第一大部分面积为(长×2+宽×2)×高+长×宽×2,并说明"长×2+宽×2"可以表示这个长方体的底面周长。师:这种方法也很好,请同学看演示。(演示这一推导思维的全过程)

板书:(长×2+宽×2)底面周长×高+长×宽×2

师:长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。

四、实践运用

1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?

说明"至少"的意思。

独立计算,说说你是怎么计算的?

2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。

3、一个正方体礼品盒,棱长1、2分米,包装这个礼品盒至少用多少平方分米的包装纸?

想一想怎样计算正方体的表面积呢?

4、选择题。1、下图长方体的表面积是

①(6×3+3×15)×2

②(6×15+3×15)×2

③(6×15+3×15+6×3)×2

单位:厘米

2、一种长方体硬纸盒,底面是边长2分米的正方形,高4分米,现在要在外面全部涂上油漆,油漆面积有多大?

①(2×4+2×4+2×2)×2

长方体的表面积教学设计篇3

教学目标:

1.知识技能:

(1)掌握长方体和正方体表面积的基本计算方法。

(2)能够根据给出的长方体的长宽高,确定与所求面对应的棱。

(3)通过练习学会灵活地解决一些实际问题。

2.过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。

3.情感、态度与价值观:结合练习培养分析、解决问题的能力,以及良好的思维品质。

教学重点和难点:

教学重点:根据给出的长方体的长宽高,确定与所求面对应的棱。

教学难点:运用长方体和正方体表面积的基本计算方法,灵活地解决实际问题。

教学过程:

一、基本练习回顾旧知

课件出示长方体和正方体

要求长方体或正方体的表面积必须知道什么?

根据给出的数据可以求出哪些面的面积?

要求表面积怎样列式计算?

学生在练习本中列式计算→小组内互相检查→个别汇报

二、变式练习探索本质

课件出示图片

在实际生活中,物体的表面并不总有6个面,老师带来了一幅图,请看,这些物体的表面各有几个面,缺少了哪个面?

学生看图判断,口头回答

同学们的判断真准确,也就是在解决有关长方体和正方体表面积有关问题时,我们首先要判断要求物体哪些面的面积,而不能盲目地列式。

下面老师这里有2道题,请同学们先判断是求物体地哪些面,然后再列出算式。

课件出示题目

杂货店售米用的木箱(上面没有盖),长1.2米、宽0.6米、高0.8米,

1.制作这样一个木箱至少要用木板多少平方米?

2.如果把木箱放在地上,占地多少平方米?

当我们求长方体的表面积的时候,首先要判断要求哪几个面的面积,缺少了哪个面;再确定所求的面对应的棱的数据,这样才不至于在计算中出现错误。

3.如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?

抓审题,引导学生想出利用木箱的侧面展开图进行计算更简便。

学生独立列式→同位互相检查→集体讲评

下面这道题,你们又能不能找准求哪些面,对应哪些棱呢?能准确判断地同学请列出算式。

4.在木箱的四周贴上商标纸,宽度是0.2米,贴这个木箱要用商标纸多少平方米?

学生尝试列式→提出审题困惑的地方→了解商标纸的“宽”实际上就是长方体的“高”发生了变化,长和宽都没有变

我们刚才围绕售米用地木箱,解决了4道题,这4道题有的是求5个面的面积、有的是求1个面的面积,有的是求4个面地面积,所以我们再解决有关题目地关键在于判断要求哪些面,找准与面所对应的棱。

三、检测练习巩固强化

这是同学们在解决问题是出现的5种列式方法,请同学们当当小老师,判断对还是错,然后在小组中交流意见,说说理由。

课件出示题目

一个橡皮擦的外包装长3厘米、宽2厘米、高0.5厘米,做这样一个外包装至少要用硬纸多少平方厘米?

(1)3×2×2+2×0.5×2()

(2)(2×0.5+3×0.5)×2+5×2()

(3)3×2×2+3×0.5()

(4)(3×2+3×0.5)×2()

(5)(2+0.5)×2×3()

学生独立思考作出判断→进行小组交流→汇报

三、综合练习发展提高

同学们真不错,不仅能自己准确找到求哪些面的面积,还会对同学的错误进行判断说理,那你能够用你地本领解决下面地问题吗?

课件出示题目

学校要给美术室重新装修,美术室长8米,宽6米,高4米。

1.工人叔叔给美术室的地面铺上地砖,铺地砖的面积是多少平方米?

2.如果每平方米用4块地砖,至少需要准备多少块地砖?

3.粉刷教室屋顶和四壁,除去门窗和黑板的面积20平方米,粉刷的面积是多少平方米?

4.如果每平方米用涂料0.25千克,至少需要涂料多少千克?

独立完成→小组中进行互评、说理→选取代表说说小组中出现的解决问题的方法有哪些。

在解决实际问题的过程中,我们除了要准确地运用方法列式计算以外,还要考虑生活地实际情况,才能够合理地解决问题。

四、全课小结

同学们,我们今天学习了什么?你有什么收获?

长方体的表面积教学设计篇4

教学目的:

使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。

教学过程:

一、复习导入

谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?

师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)

师:要求出长方体或正方体的表面积,你觉得要知道什么?

二、新课教学

1、教学长方体的表面积

教师出示长方体透视图。

长方体有几个面?每个面是什么形状?面与面有什么特点?

说说各个面的长与宽。

提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?

出示例1

学生读题,找出条件和问题。

提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)

那我们可以怎么想呢?

引导学生列出算式:8×5×2+8×4×2+5×4×2

提问:8×5×2、8×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(8×5+8×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)

提问:哪一种方法更简便?(第二种)

教师:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

完成练一练第1题。

你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。

2、立方体表面积计算

独立完成试一试,说说立方体表面积计算方法是怎样的?

三、课堂练习

完成练一练

四、全课

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

五、布置作业

作业本

六、课外延伸:

1、用两个同样大的正方体小木块拼成一个长方体,这个长方体的表面积比原来两个小正方体表面积的和大还是小?为什么?

2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是( )平方厘米。

长方体的表面积教学设计篇5

教学目标

1.通过操作观察,使学生知道长方体和正方体表面积的含义.

2.初步学会长方体和正方体表面积的计算方法.

3.培养学生的动手操作能力和空间观念.

教学重点

建立表面积概念,初步学会计算长方体和正方体的表面积.

教学难点

正确建立表面积的概念.

教学步骤

一、铺垫孕伏.

1.长方体的特征是什么?

2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

二、探究新知.

导入 :同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容.

(一)建立长方体表面积的概念.

1、教师提问:什么叫做面积?

长方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)

2、教师明确:这六个面的总面积叫做它的表面积.

3、学生两人一组相互说一说什么是.

4、教师板书:长方体6个面的总面积,叫做它的表面积.

(二)长方体表面积的计算方法.【演示课件】

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的.

2.教学例1.

做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

教师启发:做这样一个长方体纸盒要用多少平方厘米的硬纸板就是要计算这个.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积.

第一种解法:

长方体表面积=6个面积的和

64+64+45+45+65+65

=24+24+20+20+30+30

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

第二种解法:

长方体表面积=上下面面积+前后面面积+左右面面积

652+642+452

=60+48+40

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

副标题#e#

第三解法:

长方体表面积=(下面面积+前面面积+右面面积)2

(65+64+54)2

=742

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

3.思考:你认为哪种解法简便?

(根据乘法分配律可以把第一个式子和第二个式子改写成第三个式子;第三个算式更简便些)

4.教师小结:

计算长方体表面积的关键是找出每个面的长和宽.

5.练习:

一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?

三、全课小结.

这节课我们学习了什么知识?我们学习了有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)

四、随堂练习.

1.用两种方法计算自带.

2.计算下图的表面积.

①计算.

②有几种计算方法?

③哪种方法比较简便?

五、课后作业 .

一个长方体的形状大小如下图:

它上、下两个面的面积分别是多少平方分米?

它前、后两个面的面积分别是多少平方分米?

它左、右两个面的面积分别是多少平方分米?

这个是多少平方分米?

六、板书设计 .

长方体6个面的总面积叫做它的表面积.

例1.做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

64+64+45+45+65+65

=24+24+20+20+30+30

=148(平方厘米)

=60+48+40

=148(平方厘米)

652+642+452

=60+48+40

=148(平方厘米)

(65+64+54)2

=742

=148(平方厘米)

答:至少需要148平方厘米硬纸板.

长方体的表面积教学设计篇6

教学目标:

1、知识目标:让学生在操作、观察活动中,自主探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。能结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。

2、能力目标:培养学生自主探索、合作交流的能力;丰富学生对现实空间的认识,发展初步的空间观念。

3、情感目标:调动学生学习的积极性,培养学生积极自主探索、互助学习的精神,在评价中获取更多情感,同时学会欣赏他人。

教学重点:

理解长方体表面积的含义;理解并掌握长方体表面积的计算方法。难点:根据给出的长方体的长、宽、高,迅速确定每个面的长和宽,这也是正确计算长方体的表面积的关键。

教学过程:

一、复习旧知,情境导入。

1、复习长方体、正方体的特征。

2、同学们,我们手中都有长方体或正方体的盒子,但都不相同,如果把它们都包上一层红色的彩纸?它们的颜色就相同了,那么,需要多大的纸呢?从学生生活实际引入,还数学的原始本来面目,既能达到以问促学的目的,又激发了学生的求知欲。

二、实践探索,发现新知。

1、结合教材p18页内容,初步感悟表面积含义。

(1)根据左边的长方体纸盒,按要求完成所提问题。

(2)问题(课件出示)

(3)如果做上面的纸盒,需要多少纸板呢?

师引导问:需要多少纸板就是求长方体的什么?

(4)什么是长方体的表面积呢?

学生发表自己的想法。师小结。

2、小组合作学习,探索长方体表面积计算方法。

(1)课件演示展开图,加深理解。

(2)学生自主探索、合作交流长方体表面积的计算方法。

(3)汇报。

3、分析比较计算方法。通过观察分析,让学生想象,展开的实物图,在看一看中充分感知,建立表象,展开思维,发现并归纳出表面积的含义,从而明确概念。

当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,我让学生通过实物图和平面展开图的对比,自主探索。

三、举一反三,知识迁移。课件出示"试一试"

1、理解长方体表面积的含义。

2、探索正方体表面积的计算方法学生自主探索正方体表面积的计算方法。

3、汇报交流。计算正方体的表面积是在长方体表面积的基础上进行教学的,因此我把迁移类推的机会留给了学生,让学生自己发现,类推出正方体表面积的计算方法。不仅培养了学生的逻辑思维能力,而且培养了学生的再创造能力。

四、巧设练习,巩固新知。

(1)一个无盖玻璃鱼缸的形状是正方体,棱长为5分米,制作这个鱼缸至少需要多大面积的玻璃?

(2)四人一小组,用两个形状相同的正方体拼成一个长方体,算一算,拼成的长方体的表面积是多少?我设计的练习题从易到难,让学生自己运用新知识解决实际问题。使学生在研究、讨论、探索的过程中发展智能。体会生活中的长方体表面积是变化的,只有活学活用才能真正解决生活中的实际问题,从而体会到生活中处处有数学。

五、课堂小结。

1、今天我们学习了什么新知识?

2、你觉得自己这节课表现怎样?你们认为呢?