比例教案模板5篇

时间:2024-06-15 作者:loser 备课教案

通过一份教案,教师可以有条不紊地进行教学活动,提高学生的学习效率,写教案有助于教师对教学资源的整合和利用,提高教学效果,范文社小编今天就为您带来了比例教案模板5篇,相信一定会对你有所帮助。

比例教案模板5篇

比例教案篇1

教学内容:

教材第84页例1---3题,练习十七第1、3题。

教学目标:

1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。

2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:

掌握比和比例的意义与基本性质。

教学难点:

根据比例尺求图上距离和实际距离。

教具准备:

多媒体课件

教学过程:

一、 导言引入课题

比和比例(一)

二、教学例1

先在下表中写比和比例的一些知识,再举例说明。

比 比例

意义

各部分名称

基本性质

三、教学例2

比和分数、除法有什么联系?先填写下来,说一说它们的区别。

联系 例子

各部分名称

分数 分子 分数线 分母 分数值

除法

做一做:5:6=( )( )

四、教学例3

比的基本性质、分数的基本性质、商不变规律之间有什么联系?

1、学生交流

2、化简比。

3、化简比与求比值有什么不同之处?

一般方法 结果

求比值

化简比

五、解比例

x= :2【说一说思路和方法】

六、比例尺

1、什么叫做比例尺?

2、说出下面各比例尺的具体意义。

①比例尺1:3000000表示_____________

②比例尺20:1表示 _____________

3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?

4、求实际距离:在比例尺是 的地图上,量得a到b的`距离是5厘米。求ab两地的实际距离?

5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?

七、知识应用

练习十七第1、3题。

八、总结梳理

回顾本节课的学习,说一说你有哪些收获?

板书设计:

比和比例(一)

比和比例的意义与性质。

比和分数、除法的关系。 比和比例(一)

比、比例的基本性质的用途。

比例尺。

比例尺的应用。

教学反思:

在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。

比例教案篇2

教学内容:比例的意义、基本性质,比例各部分名称,组比例。

教学目标:

1. 使学生理解比例的意义,认识比例各部分的名称。

2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

教学重点:比例的意义和基本性质。

教学难点:理解比例的基本性质。

教学过程:

一、 复习

1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

2、 求下面各比的比值,哪些比的比值相等?

12:16 : 4.5:2.7 10:6

二、 新授

提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

1、 比例的意义

出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

从上不中可以看到,这辆汽车:

第一次所行台的路程和时间的比是____;

第二次所行驶的路程和时间的比是____;

这两个比的比值各是多少?它们有什么关系?

(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

板书:80:2=200:5 或 =

师:这样的式子,我们给它一个名字叫做比例。

(2) 口答

A、把复习第2题中两个比值相等的比用等号连起来。

B、用等号连接起来的式子叫做什么?

C、根据刚才的回答,你能说出什么叫比例吗?

(3) 小结。

A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的.两个比就不能组成比例。

(4) 练习,课本第10页做一做。

2、 比例的基本性质。

(1) 比例各部分的名称。

引导学生观察黑板上的例题:80:2=200:5

并自学课本

提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

(2) 说出下面各比例的外项和内项?

6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

(3) 计算:上面比例中的外项积与内项积。

(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

(5)你能得出什么结论?

三、 巩固练习

1、 完成第2页的做一做。

2、 完成第3页的做一做第1题。

四、 总结

1、 比例的意义和基本性质是什么?

2、 怎样判断两个比能否组成比例?

五、 作业

1、 完成练习四的第1-3题。

比例教案篇3

教学内容:

补充有关比例意义、基本性质和解比例的练习

教学目标:

1.进一步理解和掌握比例的意义,能根据比例的意义判断两个比能否组成比例。

2.进一步理解和掌握比例的基本性质,能根据比例的基本性质正确判断两个比能否组成比例,进一步掌握解比例的方法。

3.通过练习,让学生在思考、交流中培养分析、概括能力,体会数学知识之间的联系,感受数学学习的乐趣。

教学措施:

帮助学生系统整理前几节课学习的数学知识;设计一些有针对性的练习;练习过程中注重分析学生练习情况,加强课堂上对学习困难生的辅导。

教学准备:

上传补充练习

教学过程:

一、整理知识

1.提问:前几节课我们学习了比例的意义、基本性质和解比例这三部分内容。你有哪些收获?请你和同桌交流一下。

2.学生同桌之间进行交流。

3.指名学生交流,教师相机板书,将知识点进行梳理和归纳。

4.揭示课题:运用比例的意义和比例的基本性质可以解决一些数学问题。这节课我们继续学习有关内容。(板书课题)

二、基本练习

1.判断。

(1)比例是一个等式。

(2)甲数和乙数的比值是2/3,如果甲、乙两个数同时扩大3.5倍,它们的比值还是2/3。

(3)比例的两个内项减去两个外项的积,差是0。

(4)任意两个正方形的周长与边长的比都可以组成比例。

(5)如果a╳9=b╳6(a、b均不为0),那么,a与b的比是3:2。

组织学生思考、交流,鼓励学生完整地说出自己的分析推理过程。

2.根据下面的等式,写出几个不同的比例。

3╳40=8╳15

(1)现在已知的是一个等式,等式左、右两边的两个数分别是写出的比例中的什么?

(2)你能有序地写出所有的比例,既不重复也不遗漏吗?(学生独立完成) (3)学生交流思考过程,教师及时讲评:可以先把3和40作为比例的内项,写出四个比例;然后再把8和15作为内项写出另外四个比例。

3.判断四个数10.5、5/4、20/21、8能否组成比例?

(1)要判断四个数能否组成比例有哪些方法?(根据比例的意义或比例基本性质)

(2)你认为这里选择哪种方法比较方便?

(3)指名学生交流后,学生写出比例。

小结:如果给我们四个数,要让我们判断能否组成比例,一般,我们可以运用比例的基本性质来判断比较简便。基本方法是先将这四个数从大到小排列,然后用最大数乘最小数,中间两数相乘,看看乘积是否相等,最后根据比例基本性质来写出不同的比例。

4.按要求组成比例。

(1)从2、10、4.5、9、5五个数中选出四个组成一个比例。

(2)从18的所有约数中选出四个组成一个比例。

(3)把8和9作两个外项,比值是1/2的一个比例。

(4)给5、8、0.4三个数分别配上一个不同的数,组成两个不同的比例.

逐个出示题目,学生练习之前先要弄清题目要求。

学生完成后进行交流,要求说说自己的思考过程,教师及时评价。

教师要及时关注学生存在的问题及时辅导。

5.根据比例的基本性质,在括号里填上合适的数。

15:3=( ):1 2:0.5=12:( )

0.3/4=( )/32 7/9:( )=1/2:3/5

( )/12=3/18 ( ):4.5=0.4:9

先让学生根据比例基本性质来思考并求出括号中的数,然后请学生交流思考过程。

三、解比例

25:7=x:35 514: 35= 57:x 23:x= 12:14 x:15=13: 56

2、根据下面的条件列出比例,并且解比例

a. 96和x的比等于16和5的比。

b. 45 和x的比等于25和8的比。

c. 两个外项是24和18,两个内项是x和36 。

四、全课总结

通过本节课的学习,你又有哪些收获?你还有什么问题没有弄明白吗?

四、布置作业

补充相应练习

比例教案篇4

教学目标:

1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学关键:

理解成正比例的两个量的意义。

教学过程:

一、复习准备:

口答

1、已知路程和时间,怎样求速度?

2、已知总价和数量,怎样求单价?

3、已知工作总量和工作时间,怎样求工作效率?

二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

课件出示:

1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

特点是:

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的。

4、正方形的面积与边长的比是边长,是一个不确定的值。

学生在小组内练说发现的规律,初步感知正比例的判定。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

3、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

4、正比例关系:观察思考成正比例的量有什么特征?

小结:

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的'比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

(2)字母表达关系式。

如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

(3)质疑。

师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

三、巩固练习

(一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

2、根据小明和爸爸的年龄变化情况

把表填写完整。父子的年龄成正比例吗?为什么?

(二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

1、判断下面各题中的两个量,是否成正比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长与长。

2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

4、画一画,你会有新的发现。

彩带每米4元,购买2米、3米…彩带分别需要多少钱?

①填一填:(长度:米,价格:元)

②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

板书:

正比例的意义

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是一定的

路程÷时间=速度(一定)总价÷数量=单价(一定)

=k(一定)

比例教案篇5

1.理解并掌握反比例函数的概念,根据实际问题能列出反比例函数关系式;。

2.能判断一个给定的函数是否为反比例函数。

通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。

经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。

对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。

通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。

由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.

活动目的 给学生设置疑问,激发学生学习兴趣。

我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如为vt=1200,则t= 中,t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.

活动目的 在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型。

1.引入我们今天要学习的是反比例函数,

2. 探究归纳

经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. 复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

问题1 从a地到b地的路程为1200 km,某人开车要从a地到b地,求汽车的速度v(km/h)和时间t(h)之间的关系式。

从这个关系式中发现:

1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.

2.自变量v的取值是v>0.

问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.分析 根据矩形面积可 xy=24, 即

从这个关系中发现:

1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边 减小;若一边减小了,则另一边增大;

2.自变量的取值是x>0.

上述几个函数都具有 的形式,一般地,形如 (k是常数,k≠0)的函数叫做反比例函数

说明 1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即 ,k是常数,且k≠0;反比例函数 ,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系.

2.反比例函数的解析式又可以写成: ( k是常数,k≠0).

3.要求出反比例函数的解析式,只要求出k即可.

(1)每人写三个反比例函数,请同桌指出其中k的值.

(2)小组讨论:举出实际生活学习中具有反比例关系的例子。

1. 下列函数关系中,哪些是反比例函数?

(1) (2) (3) (4) (5) (6)

2. 写出下列函数关系式,并指出它们是什么函数?

(1)三角形的面积s是常数时,它的底边长y和这条底上的高x的函数关系;

(2)食堂存煤15吨,可使用的天数t和平均每天的用煤

量q(千克)的函数关系.

(3).某厂现在年产值是150万元,计划今后每年增加10万元,请写出年产值y(万元)与年数x之间的关系.

1.本堂课,我们讨论了具有什么 样的函数是反比例函数,一般地,形如 (k是常数,k≠0)的函数叫做反比例函数

2.反比例函数的几种常见形式

形式1: (k为常数,k≠0)

形式2: (k为常数,k≠0)

形式3: (k为常数,k≠0)