在明确了自己的教学目标后,我就可以认真书写教案了,制定教案是我们开展教学工作前的首要任务,范文社小编今天就为您带来了比的教案教案8篇,相信一定会对你有所帮助。
比的教案教案篇1
一、 创设情境:
1、出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?
2、请同学们想一想:你认为怎么分合理?说一说你的分法。
二、探究新知:
1、出示题目:这筐橘子按3:2应该怎样分?
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的过程。
(3)各小组汇报:自己的分法。
大班小班
3个2个
6个4个
30个20个
............
2、出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
方法一:
大班小班
30个20个
30个20个
............
方法二:画图
140个
方法三:列式
3+2=5
140=84(个)
140=56(个)
答:大班分84个,小班分56个,比较合理。
(还会出现用整数方法来列式计算的。)
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
三、巩固新知。
完成课本第55页:
1、独立试做:试一试
2、独立试做练一练的1题、2题,3题抢答,并说明理由。
四、知识拓展:数学故事。(共同探讨方法)
五、总结:1、学生看书总结本节所学内容。
2、提出自己还有些疑惑的问题。
六、【板书】
比的应用
3+2=5
140=84(个)
140=56(个)
答:大班分84个,小班分56个,比较合理
提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。
这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。
有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。
培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。
比的教案教案篇2
教学目标
1、让学生了解比在生活中的广泛应用,探索按比例分配的解决方法,并能用来解决有关实际问题。
2、培养学生自主探索解决问题的能力,培养学生的创造性思维和实践能力。
3、树立用自己学来的知识帮忙解决问题的意识。
教学重点掌握按比例分配的解决方法.
教学难点灵活解决实际问题。
教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。
学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的'学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
教学过程
活动一
1、课前调查
奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?
牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。
2、实际操作
要配置220毫升奶茶,需要多少牛奶和多少红茶?
学生讨论,研究不同算法。
解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml
解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml
讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。
学生配置奶茶,共同品尝。
活动二
1、教学例2
书上例2,列式计算
2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。
活动三:
1、请帮忙配糖:
一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)
3、帮刘爷爷收电费
刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?
住户王家张家赵家李家
分电表度数40382953
3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?
4、总结全课
比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。
比的教案教案篇3
教学内容:
冀教版小学数学六年级上二单元第5课时 (比的应用)
教学目标:
1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;
2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;
3、通过实例使学生感受到数学来源于生活,生活离不开数学。
教学重点:
1、正确理解按比例分配的意义。
2、掌握按比例分配应用题的特征和解题方法。
教学难点:
能正确、熟练地解答按比例分配的实际问题。
课前准备:
布置学生预习
教学过程:
一、创设情境
1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。(两人共同合作劳动,完成份额不同,所得分配问题)
2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?
(组织交流)
师:这里的报酬要完成份额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)
二、初步感知
1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)
2、谁能用自己的语言说说3:2的具体含义。
3、谁能用算式表示两位各应分得多少元?
4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)
三、自主探究,合作研习
1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。
2、 此时用ppt出示“学习内容”“学习目标”和“导学提纲”
学习内容:冀教版小学数学六年级上册第19页。
学习目标
1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。
2、认识连比,理解三个数量连比的意义。
导学提纲
1、例1中“紫色与红色方块数的比是3:5”的含义是什么?
2、与同学说说例题中每种方法的解题思路。
3、你能画图理解这两种解题方法与同学交流吗?
4、你怎样理解例2“按照2:3:5配置混凝土”这句话的含义?
5、“练一练”第3题是把1200千克培养料按怎样的比来分配?
学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。
(1)独立思考,尝试解答。
(2)小组交流,说说想法。
(3)组织交流,形成思路。
(4)选好内容,进行预展示。
四、集中展示
1、例1中“紫色与红色块数的比是3:5”的含义是什么?
预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。
(2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,
茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。
2、展示例2的解题思路及方法……
3、展示“练一练3”的解题方法
小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?
预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。
五、反馈检测
1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?
2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?
3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?
4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。
六、课堂小结
学了这节课,你有什么收获?
七、课堂作业
20页,1、2、4、5。
板书设计:
按比例分配的解题方法
一要知道分配的数量,二要知道按怎样的比分配
比的教案教案篇4
学材分析
按比例分配的练习。
学情分析
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
学习目标
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
导学策略
练习、反思、总结。
教学准备
小黑板
教师活动
学生活动
一、基本练习:
(一)六1班男生和女生的比是3:2
1.男生人数是女生人数的()
2.女生人数是男生人数的(),女生人数和男生人数的比是().
3.男生人数占全班人数的(),男生人数和全班人数的比是().
4.全班人数是男生人数的(),全班人数和男生人数的比是().
5.女生人数占全班人数的(),女生人数和全班人数的比是().
6.全班人数是女生人数的(),全班人数和女生人数的比是().
(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?
?
把250按2比3分配,部分数各是多少
二、变式练习:
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?
3+5=8
1203/8=45(个)1205/8=75(个)
2+3=5
2502/5=1002503/5=150或250-100=150
4+5=9
364/9=16365/9=20或36-16=20
1+5000=5001
0.51/5001=0.55001=2500.5(千克)
教学反思
提高练习的灵活度,以及练习的形式。
比的教案教案篇5
教学目标
使学生加深对比的认识,进一步掌握比的知识在解决实际问题中的应用,并加深认识不同问题的'特征和解题方法,并沟通知识间的联系,提高学生应用比的知识解决实际问题的能力,以及思维能力和思维品质。
教学重难点
运用比的知识解决实际问题。
教学准备
教学过程设计
教学内容
师生活动
备注
一、基本训练
二、应用题练习
三、小结
四、作业
1、口算
练习1310
2、说出下面每句话的具体意思。
一本书,已看页数和剩下页数的比是2∶1。
苹果筐数和橘子筐数的比是3∶4
一个长方形长和宽的比是5∶3
男生与全班人数的比是4∶9
要求说出各占几份,再说出每个数量各占总数量的几份之几和一个数量是另一个数量的几分之几或几倍。
3、用比表示下列数量之间的关系。
合唱组人数是美术组的3倍。
大米袋数是面粉的1.5倍。
公牛头数是母牛的1/3
摩托车辆数是自行车的2/5。
1、解答应用题
配制黑火药用的原料是火硝、硫磺和木炭。这三种原料重量的比是15∶2∶3。要配制240千克这种黑火药,需要三种原料各多少千克?
上下练习;
问:已知什么,要求什么?这是什么应用题?关键是什么?
2、练习1311
问:4∶1是哪两个数量的比?长和宽对应的总长度是40米吗?为什么?
要下求什么,再求长和宽?
上下练习。
3、练习1313
明确题意后指出:能根据数量与比之间的对应关系把它改编成分数应用题吗?
学生口述后解答。说想法。
能把(2)改编成分数应用题吗?
练习131213
课后感受
同学们能运用比的知识解决实际问题.
比的教案教案篇6
设计说明
根据本节课的内容进行如下设计:
1、创设有效情境,自然引入新课。
首先利用教材中的情境,让学生交流分橘子的方法,从而引出平均分的方法不公平,而按照学生人数的比来分橘子比较合理,将学生的思路自然而然地引入到本节课,即按一定的比进行分配的问题的探讨中来。
2、给学生提供了充分思考和活动的空间。
在新知的探究过程中,给学生提供充分的体验空间。让学生利用手中的小棒代替橘子,鼓励他们实际分配,并做好分配的记录,使学生在这一操作过程中进一步体会比的意义。有了上面的实际操作经验,在解决把140个橘子按3∶2进行分配时,给学生提供了充分的探究和交流的空间。在学生探究出不同的解决问题的策略后,组织他们将不同的策略进行比较,发现其中的共同点,让学生在比较的基础上选择自己认为合理的策略解决问题。
课前准备
教师准备ppt课件
学生准备小棒
教学过程
导入新课
1、观察情境图,获取图中的信息。(课件出示)
从这幅图中你知道了哪些信息?(指名回答)
2、提出问题。
把这些橘子分给1班和2班,怎样分合理?
3、讨论分配方案。
请同学们想一想,说一说你的分法。
(1)学生思考,同桌交流。
(2)指名汇报,说明理由。
预设
生1:可以每个班各分一半。
生2:按1班和2班人数的比来分配。
引导学生说出两个班的人数不一样,平均分看似公平,其实并不公平,而根据两个班人数的比3∶2来分比较合理。
4、引入课题。
像这样,把一个数量按一定的比进行分配的问题在生活中常常会遇到,今天我们就来共同学习这类问题的解决方法。(板书课题:比的应用)
设计意图:通过具体情境,使学生体会到数学与生活的密切联系,激发学生的学习兴趣,引导学生分析情境中的数学信息,为后面的动手操作、分析推导解题方法奠定基础。
探究新知
(一)初探新知。
要把这筐橘子按3∶2分给1班和2班的小朋友,应该怎样分?我们用小棒代替橘子分一分。
1、小组交流后学生动手分配。
引导学生明确1班占3份,2班占2份。
2、记录分配的过程。
引导学生在记录过程中发现6∶4,30∶20……都等于3∶2,为寻找解决问题的策略奠定基础。
3、各小组汇报,说说自己的分法。
引导学生不断调整每次分配的数量,明确1班占3份,2班占2份。
4、在这次分小棒的过程中,你有什么发现?说说感受。
(每次分的小棒的根数比都是3∶2)
设计意图:在分小棒的操作活动中,进一步体会比的意义,在观察记录的过程中发现6∶4,30∶20……都等于3∶2,巩固了化简比的内容。另外,学生不断地调整每次分配的数量,不断地产生新的解题策略,理解按一定的比进行分配的意义。
比的教案教案篇7
教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。
学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
教学过程
活动??
1、课前调查
奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?
牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。
2、实际操作
要配置220毫升奶茶,需要多少牛奶和多少红茶?
学生讨论,研究不同算法。
解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml
解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml
讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。
学生配置奶茶,共同品尝。
活动二
1、教学例2
书上例2,列式计算
2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。
活动三:
1、请帮忙配糖:
一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)
3、帮刘爷爷收电费
刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?
住户王家张家赵家李家
分电表度数40382953
3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?
4、总结全课
比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。
比的教案教案篇8
教学目标:
1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,xxx(补充问题并解答)
二、新授。
1、教学例2。
(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
① 稀释液平均分成的份数:1+4=5
浓缩液的体积:500× =100(ml)
水的体积:500× =400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4
(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答:
① 三个班的总人数:47+45+48=140(人)
② 一班应栽的棵数: 280× = 94(人)
③ 二班应栽的棵数: 280× = 90(人)
④ 三班应栽的棵数: 280× = 96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。
练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学反思:
本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。