只有将教学反思写好,才能成为更优秀的教师,写好教学反思对提高我们的课堂质量有很大帮助,下面是范文社小编为您分享的简便运算教学反思7篇,感谢您的参阅。
简便运算教学反思篇1
运算定律与简便计算,共包括了五个定律和两个性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c
连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)
大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:
1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)
34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)
2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学
4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4
5.针对逆向运用,有以下规律
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
简便运算教学反思篇2
一、调整教材顺序,促进有效教学
“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“l型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
简便运算教学反思篇3
满校园都洋溢着愚人节的气氛,权且满足了学生这兴奋的心情吧!
到今天为止,第三单元《运算定律与简便计算》就算是告一段落了。从昨天的测试来看,大部分孩子们对于基础的简便运算题已经能够选择合适的方法进行简算了,但是情况也不能太乐观,这期间还有一些学习困难的'孩子对于变形后的乘法分配律不太理解,例如昨天的一道考题:777*9+111*37。题目中已经提示要将777转化为111*7了,但是孩子们的思维还是不开阔,想不出下一步该怎么算。今天用最后一节课对于整个单元进行了一个回顾与整理,顺便将昨天的题作为一个重点题目讲了一下,从孩子们的反应中看得出来,大多数的学生已经能够掌握这种先变型后计算的方法了,但那几个学困生仍然是无从下手。
这节课设计的亮点就是先给学生讲解典型例题,然后再让学生仿照例题做“模拟训练”。收效还不错,讲解的时候提醒孩子们该题的解决方法是什么,怎样通过转化能将不太容易解决的问题变成可以进行口算的例子。孩子们在真正的理解了运算定律之后才着手练习,因此,正确率就相应的跟着提上来了,今后的练习课,当然是跟计算有关的练习还可以继续采取这样的形式让学生巩固知识要点,从而将解决问题的方法内化为今后学习的方法。
然而,课总是不那么十全十美,今天遇到的问题是没有能够将这种检查的工作贯穿整节课,课上肯定仍然有“浑水摸鱼”的孩子,看表情是已经听的很明白、很清晰了,但是实际操作的时候就出问题了,比如说讲完第一个例子之后,随之就出了一个模拟训练题:666*9+222*73这个题,有5名同学居然又要将666和222都要转化成111再进行简便运算了,殊不知本题就是要将加号两边的算式变出相同的因数来就可以了,孩子们却在大费周章的进行“照猫画虎”!哎!还是在学习的举一反三和逐类旁通方面没有给学生做一个很好的引导啊!
这个单元到此就结束了,不可以再花太长的时间练习了,否则后面的课就要出问题了。但是可以讲深化练习放在自习课的时间去开展,定要将简便运算的方法渗透给每一位力求上进的孩子们!让简便运算不再是个解不开的谜藏在孩子们中间。
简便运算教学反思篇4
四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:
一、学会寻找题目的特点。
(1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。
例如:25、36,把36写成4×9。变成25×4×9,使计算简便。
(2)把接近整数的写成整数和一个一位数相加减。
例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。
(3)寻找能凑成整数的数,把它们相加减。
例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。
例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。
二、巧妙运用简便计算。
简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。
例如:28×25的计算方法可以是(a)(20+8)×25=20×25+8×25(b)(7×4)×25=7×(4×25)(c)28×(100÷4)=28×100÷4
三、注重题目的对比。
有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。
例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律
例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把 102拆成100+2。
总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。
简便运算教学反思篇5
简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单,从而大幅度地提高计算速度及正确率。
近两周时间我一直在教学运算定律和简算,开始时学生对简算还挺感兴趣,毕竟简算可以摆脱那些繁琐的四则混合运算了,也不用竖式计算了,可是随着简算类型的不断增多,学生开始对一些类型混淆了,特别是乘法结合律和乘法分配律混淆的最多。随着简算方法的多样化,简算的准确性也大打折扣。我发现:简算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的特征,并合理地进行简便运算。
为此,我让学生做了大量的直接简算的题。通过练习,引导学生总结出一些常见的可以简算的对象,如:“25×4”、“125×8”、“5与任何偶数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。课堂上,当简便运算的错误发生时,我试着把问题反抛给学生,让学生自己来分析问题,解决问题。问题反抛,往往会给学生一种强刺激,他们会细致深入地思考,这个地方为什么会错了呢?有没有办法解决呢?这时,学生的注意力高度集中,思考的质量最高,也就成了思维品质培养的最佳时机。如:①176—57+43②147×16+53×25③175÷25×4④75+25-75+25等,受“凑整”思想的干扰,第一小题抛出后,学生们一眼看出数字57和43能凑整,于是绝大多数的学生忽略了运算符号,违背了运算法则,纷纷列出176-57+43=176-(57+43)=176-100。看到学生们果真上当了,我马上让学生计算17643,然后追问学生,这两道题都可以变成176-100吗?然后将两道题放在一起对比,找出算式的异同之处,并让学生按顺序算出两道题的结果进行验算。有了这一题的基础,学生在计算175÷25×4时就不容易出现类似的错误了。
“运用乘法分配律进行简算”是学生最不容易掌握的。乘法分配律的逆用是学生掌握的难点,老是容易出错。比如,第二道题,由于这道题与乘法分配律在表现形式上十分相近,致使一些学生容易造成直觉上的错误,误用乘法分配律解决问题,这说明学生对乘法分配律的理解还不够透彻。而少数观察仔细的学生则认为这些算法不正确!这时,我顺势让学生自己辩论,究竟能不能简便运算呢,有什么依据?各自说说理由,通过一番激烈的辩论,认为能简便运算的同学终于发现,原来两个乘法算式没有共同的因数,所以不能使用乘法分配律。有了这次简便运算的系统练习经验,学生们对定律和性质的理解和认识更加深刻了,在后来做简便运算习题时,学生们都表现出非常的小心和仔细,避免自己犯同样的错误。
最后强调:简便运算的思路会有很多,只要把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。这样教学,不仅使学生学会了单纯的简便运算,更重要的是,使学生初步理解了学以致用的道理,真正理解了书本上的知识必须运用到实际当中去的道理。
简便运算教学反思篇6
?运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。
1、本节课我本着学生为主体,教师为主导。而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的,练着说;还说不明白,优秀学生引领。
2、把教学目的给孩子,把学习方案给孩子。放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的表现让我惊异。两种分类方法说的头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。
还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!
3、在乘法分配律的汇报过程中,学生的理解表达能力受阻,一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。
4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。
简便运算教学反思篇7
分数乘法简便计算是在学生学习了运用乘法运算定律使整、小数乘法计算简便和分数加、减、乘法计算的基础上进行教学的,通过教学使学生进一步理解整数乘法的运算定律不仅适用于小数、整数乘法,而且也适用于分数乘法,使计算简便。有助于提高计算效率,有利于实际应用。
教学中,我设计以学生的自主学习为主,小组讨论为辅,大胆猜想为依据,实例验证为手段,集体归纳为结果的方式来进行学习。在这个过程中,学生完全是学习的主人,而我只是辅助性的导,包括练习的设计都充分体现了这一理念。
原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。问题究竟出在哪里?我回顾了这节课,发现我的教学是努力体现了课改的精神,整节课运用了三步导学模式,让学生自主学习、展示交流。课堂力求能让学生完成的教师决不代替,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。由于教材没有例题,练习过于简单,学生往往不需要太多的思考,新授的问题就迎刃而解,大大地缩小了学生思维的空间,如何发挥教学的作用呢?怎样来培养学生灵活的简便算能力?经过反思后,我认为在教学关于简便计算应从下面着手:
不能单纯地依赖模仿和记忆。让学生动手实践,自主探索,合作交流加强数学与现实世界的联系是学数学的重要方式。在教学中我提问了多个学生,用语言描述加法定律,结果没有一个学生描述的清楚,倒是对用字母表示运算定律轻车熟路,问为什么这样做,都是用字母表示定律来回答。我想如果能让学生联系实际举例来说明,注重通过实际情境来分析算式,帮助学生从直观上来理解运算定律。效果既会加深对定律的理解,也能感受到数学计算与生活的紧密联系,提高解决问题能力。用两种方法解体现了学生思维方式的多样化,从不同角度思考问题、解决问题。出现算法的多样化后,我们应该利用这个契机,从而建立起简便运算模型:为后面的变式灵活、合理地进行简便运算打下扎实的基础。 借助数学知识的现实原型,可以调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。其次,是混合运算与简算混淆,乱用简便运算,另外是分配律用错的最多。