教学原理教学反思6篇

时间:2022-11-20 作者:Gourmand 教学计划

教学反思是教师必备的技能,这也是能够提升教师的教学能力的,教学反思是教师对自己已经完成的教学任务的回顾和总结,以下是范文社小编精心为您推荐的教学原理教学反思6篇,供大家参考。

教学原理教学反思6篇

教学原理教学反思篇1

抽屉原理指的是在某些数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课把4个苹果放进3个盘子中的操作情境,介绍了一类较简单的“抽屉原理”,即把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。关于这类问题的 “证明”主要涉及的方法是 “枚举法”、“反证法”、“假设法”等方法,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。

教材不仅是涉及到最简单的“抽屉原理”:把 m个物体任意分放进n 个空抽屉里(m> n, n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。还涉及了了“抽屉原理”更为一般的形式:教材的例2涉及的就是,把多于 kn个物体任意分放进 n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。如果问题所讨论的对象有无限多个,“抽屉原理”还有另一种表述:把无限多个物体任意分放进 n个空抽屉,那么一定有一个抽屉中放进了无限多个物体。抽屉原理是很难的,其中原理也是难理解,本节课所要解决的问题是:

1.使学生初步了解抽屉原理

2.通过动手操作、画图、推理等活动初步让学生经历“数学证明”的过程。

3.在学习中能发现一定的规律,培养学生的“模型”思想。

把4只苹果放进3个盘子中的操作情境,介绍了一类较简单的“抽屉问题”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个盘子里至少放进2只苹果,从而产生疑问,激起寻求答案的欲望。在这里,“4只苹果”就是“4个要分放的物体”,“3个盘子”就是“3个盘子”,这个问题用“盘子问题”的语言来描述就是:把4个物体放进3个盘子,总有一个盘子至少有2个物体。

为了解释这一现象,本课呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆苹果,发现把4只苹果分配到3个盘子中一共只有四种情况(在这里,只考虑存在性问题,即把4只苹果不管放进哪个盘子,都视为同一种情况)。在每一种情况中,都一定有一个盘子中至少有2只苹果。通过罗列实验的所有结果,就可以解释前面提出的疑问。实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。第二种方法采用的是“反证法”或“假设法”的`思路,即假设先在每个盘子中放1只苹果,3个盘子里就放了3只苹果。还剩下1只,放入任意一个盘子,那么这个盘子中就有2只苹果了。这种方法比第一种方法更为抽象,更具一般性。例如,如果要回答“为什么把(n +1)只苹果放进 n个盘子,总有一个盘子里至少放进2只苹果”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。

教学时应有意识地让学生理解“抽屉问题”的“一般化模型”。教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用一般性的数学方法来思考问题。学生在解决了“4只苹果放进3个盘子”的问题以后,可以让学生继续思考:把5只苹果放进4个盘子,总有一个盘子里至少放进2只苹果,为什么?如果把6只苹果放进5个盘子,结果是否一样呢?把7只苹果放进6个盘子呢?把10只苹果放进9个盘子呢?把100只苹果放进99个盘子呢?引导学生得出一般性的结论:只要放的苹果数比盘子的数量多1,总有一个盘子里至少放进2只苹果。接着,可以继续提问:如果要放的苹果数比盘子的数量多2,多3,多4呢?引导学生发现:只要苹果数比盘子的数量多,这个结论都是成立的。通过这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。

教学时应鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”。例如,在解决“5个苹果放2个盘子”的问题时,由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法。但由于枚举的方法毕竟受到数据大小的限制,随着书的本数的增多,教师应该进行适当的引导。假设法最核心的思路就是把书尽量多地“平均分”给各个盘子,看每个盘子能分到多少本书,剩下的书不管放到哪个盘子,总有一个盘子比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。

当学生利用有余数除法解决了本例中的三个具体问题后,教师应引导学生总结归纳这一类“盘子问题”的一般规律,要把某一数量(奇数)的苹果放进2个盘子,只要用这个数除以2,总有一个盘子至少放进数量比商多1的书。例如,要把40个苹果放进9个盘子,40÷9=4……4,因此,总有一个盘子至少放进5个苹果。如果进一步一般化的话,就是:要把 a个物体放进n个盘子,如果a÷n=b……c(c≠0),那么一定有一个盘子至少可以放(b+1)个物体。这一结论与前文提到的“把多于kn 个物体任意分放进 n个空盘子(k 是正整数),那么一定有一个盘子中放进了至少(k+1)个物体”意思是完全一致的。

学生完成“做一做”时,可以仿照例2,利用8÷3=2……2,可知总有一个鸽舍里至少有3只鸽子。

整节课这样上下来,思路很清晰,节奏放得也比较慢,环环相扣,步步为营,学生学得还是比较扎实,甚至连后进生也能听懂今天的课,效果还是不错的。还需要改进的是,某些地方节奏应该还可以再快点,以至于最后还能有充分的时间进行独立思考练习,或者有足够的时间来解决稍复杂的抽屉原理的变式习题,课的效果就会更好。

教学原理教学反思篇2

一、 成功之处

1、 教学的三维目标得到落实,特别是情感目标达成度超过教师的预期。

学生知道和感受了浸在液体中的物体受到向上的浮力,并能通过自主探究得到用弹簧测力计测量浮力的方法;通过探究得出了阿基米德原理,通过教师的引导知道了阿基米德的适用范围;经历了猜想、假设、设计实验、选择器材到实验探究的过程,并在探究活动中增强了团队意识和团队精神。

2、 重点突出、难点突破。

纵观整节课是突出了阿基米德原理的得出过程。对于设计环节中收集所排开液体的这一难点,使用了小组讨论和各组交流的方法来突破,课堂中不同小组设计方法和所选器材不一样,最后由老师综合各组所长来定下最佳方案,也收到了预期效果。

3、 教学环节齐全、教学思路清晰、板书内容简洁有效、环节过渡自然。

从引入到新课“浮力测量、探究的引导、结论的得出”直至最后的两个精致练习和具有预习性和巩固性的作业,教学环节齐全。板书的内容即体现教师的教学思路清晰又能起到小结的作用。每个环节的过渡都有适当的过渡句,自然而流畅。

二、 不足之处

1、 引入时,一个学生说游泳时进入水中后一直下沉,实际他不会游泳。在这里是一个进行生命教育的契机,我没有抓住这样一个教育机会。

2、 在学生交流设计方案时,教师的引导不到位。应当提示学生分析所选器材的好处及不足,这样更能给学生成功感和有更大的收益。

3、 有一组学生的实验数据记录有误,这是学生实验时常见的错误。应当抓住这个机会对全体学生进行实验素养的培养,并指导学生如何纠正弥补。

4、 整节课时间安排略显前松后紧,虽不是我的本意,但没有把控好。导致后来设计交流时略显仓促。

5、 设计实验交流后,由于时间紧张,自己的情绪也紧张起来,语言不流畅,这样会影响学生的学习情绪。

6、 数据交流应当用实物投影更有说服力。

7、 测浮力时有点拖踏。

教学原理教学反思篇3

鸽巢原理是数学广角的知识,比较抽象,学生难于理解,因此培养学生的兴趣很重要,只有调动学生的积极性,学生才能主动去思考去想办法,最后总结规律,找到解决问题的办法。因此课前我准备了一幅扑克,去掉大王和小王,在学生面前变魔术,我对学生说:“我随意抽出五张牌至少有两种牌是花色一样的。”有的同学半信半疑,有的同学说同意。于是我找三名同学到前面来实验,实验的结果和我是一样的。于是我有说:老师叫的三位同学玩这个游戏,不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?引入本节课的重点“总有……至少……”。

通过这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,只有学生主动参与到学习活动中,才是有效的教学。在教学过程中,充分利用学具操作,把4支笔放入3个杯子学习中,把5支笔放入2个杯子学习中等,都是让学生自己操作,这为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,通过学生归纳总结规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解鸽巢问题。在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。

教学原理教学反思篇4

在验证阿基米德原理的实验过程中,我发现了这样几个问题:

(1)虽然学生能够根据情景提出浮力大小与排开液体的多少有关的猜测,但很难进一步作出浮力大小等于排开液体的重力的假设;

(2)如果完全放手让学生自己设计实验方案进行实验来验证假设。

限于学生的能力,只有极个别小组能顺利完成,而大部分小组连实验方案都未弄清,只是模仿别的小组,动动手而已,这样既浪费了大量的时间,又无法使教学目标得到落实,课堂教学效率低下。

于是在第二个班级开展实验课的时候在我对原先的教学设计作了这样的处理:(1)在学生提出浮力大小与排开液体的多少有关的猜测后,由教师直接设问那么浮力大小是否就等于排开液体的多少?,通过对多少应该是指哪一个物理量的讨论,引导学生进一步作出浮力大小等于排开液体的重力的假设。

(2)在实验前安排学生讨论、交流实验方案,一方面通过学生间的相互交流、思维碰撞,可以逐步优化实验方案;另一方面也为一部分存在困难的学生理清思路、明确操作方法。实践证明,这些改进方案确实起到了提高探究活动的效果和效率的作用。我们深刻地体会到,探究活动的组织和对学生探究能力的培养,应该循序渐进,由简单到复杂,从有序到无序,探究活动中要结合学生的实际情况,如果让学生一步进入较高的探究要求,就会使学生迷失方向。另外,在学生的探究活动中,教师决不应该是一位旁观者,应该是参与者、学习者、组织者、指导者和评价者,学生的探究应当是在教师适时、适度的引导下进行。

教学原理教学反思篇5

“抽屉原理”是开发智力,开阔视野的数学思维训练内容,对于一部分想象能力较弱的学生来说学起来存在一定的困难。通过本次课堂实践,有几点体会:

1、创设情境,调动学生的学习积极性。课前让几个学生表演“抢椅子”的游戏:如3个人抢坐2把椅子、4个人抢坐3把椅子。让学生在活动中初步感知抽象的“抽屉原理”,理解“至少”的意思。

2、合作交流,建立模型。根据课前的表演及老师的分苹果演示,交流、讨论理解:“待分物体数”、“抽屉数”、“至少数”分别指什么?“至少数”为什么是商加1,而不是商加余数?通过老师的提示、引领,学生对“抽屉原理”基本上能理解,但是要让学生用简练的语言表达出来还有一定的困难。

3、培养学生的“模型”思想,提高解题能力。“抽屉原理”的问题变式很多,应用更具灵活性。能否将一个具体问题和“抽屉原理”联系起来,能否找出题中什么是“待分物体数”,什么是“抽屉”,是解题的关键。有时候找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了也很难确定用什么作“抽屉”。教学时,我不过于强调说理的严密性,只要学生能把大致意思说出来就行,有些题目能借助实物或用枚举法举例猜测、验证也可以。

回顾整节课我觉得主要存在两个问题:1、在学生体验数学知识的产生过程中,老师担心学生不理解、走错路,不敢大胆放手,总是牵着学生的思路走。2、这部分内容属于思维训练的内容,有少部分学生学起来困难大,效果差。在课堂上如何更好地发挥学生的主体性,如何关注学困生的同步发展,我们将继续寻找方法。

教学原理教学反思篇6

本课是小学六年级数学广角的内容,初看教学内容,我甚至没有看懂所学的内容与我们现在学习的知识有多大联系,不知道这部分知识能够解决什么问题,而且这部分知识又有一定的难度。但我是一个喜欢冒险与挑战的人,觉得越是有难度的课,如何能让学生理解并掌握,专研这种课对于我个人来说是非常有价值的。因此,我毅然决定的选择了这节课。

细细的专研教材,终于有了比较清晰的思路,明确了教学的目标。

本堂课着眼于学生数学思维的发展,通过猜测、验证、观察、分析等活动,建立数学模型,渗透数学思想。

数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。

一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。“创设情境―――建立模型―――解释应用”是新课程所倡导的教学模式。本节课运用这一模式,创设了一些活动,让学生通过活动,产

生兴趣,让学生经历探究“抽屉原理”的过程,初步了解了“抽屉原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

课后,通过方丽娜老师的指点,我觉得,有以下几方面与大家共勉。

一、情境导入“理性化”

情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容,营造一个教学情境,帮助学生在广泛的文化情境中学习探索,导入新课的目的是要引起学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理。我以四人小组的形式玩“剪刀、石头、布”的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象。通过教学发现,这样课堂比较“杂与乱”,缺少一种理性。因此,将此游戏设计为:猜一猜,班上有几位同学的生日是在同一个月的。这样的设计更加的符合教学。

二、教学过程“简单化”

理解“抽屉原理”对于学生来说有着一定的难度,在教学例题:把5个苹果放进2个抽屉中,证明,不管怎么放,总有一个抽屉里至少放进了3个苹果。我是这样教学的:首先从简单的情况入手研究(把3个苹果放进2个抽屉,可以这么放?),通过简单的教学,不仅为学生学习例题铺垫,同时又可以渗透解决复杂的问题可以将问题简单化或者已经学过的知识的这一种思想。

三、数学语言“精简化”

教学,是一门学问,更是一门艺术。特别是数学这一门学科,课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,课堂教学中,教师应严谨准确地使用数学语言,善于发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用。

四、练习设计“多样化”

练习,是学生在老师的指导下,巩固和运用知识,形成技能,技巧并提高能力的一种教学方法。要让全体学生计算达到熟练,思维得到发展,就必须加强针对性的练习。但是,如果在教学中,单一的进行练习,不仅学生的解题能力不容易提高,使学生产生乏味、枯燥的感觉,而且会使学生的思维呆板。由此影响学生的听课效率和练习效果。相反,适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。因此,在不改变练习内容的前提下,可以适当地改变一下形式:如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由”。在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。